期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Mach Number Prediction for a Wind Tunnel Based on the CNN-LSTM-Attention Method
1
作者 ZHAO Luping WU Kunyang 《Instrumentation》 2023年第4期64-82,共19页
The test section’s Mach number in wind tunnel testing is a significant metric for evaluating system performance.The quality of the flow field in the wind tunnel is contingent upon the system's capacity to maintai... The test section’s Mach number in wind tunnel testing is a significant metric for evaluating system performance.The quality of the flow field in the wind tunnel is contingent upon the system's capacity to maintain stability across various working conditions.The process flow in wind tunnel testing is inherently complex,resulting in a system characterized by nonlinearity,time lag,and multiple working conditions.To implement the predictive control algorithm,a precise Mach number prediction model must be created.Therefore,this report studies the method for Mach number prediction modelling in wind tunnel flow fields with various working conditions.Firstly,this paper introduces a continuous transonic wind tunnel.The key physical quantities affecting the flow field of the wind tunnel are determined by analyzing its structure and blowing process.Secondly,considering the nonlinear and time-lag characteristics of the wind tunnel system,a CNN-LSTM model is employed to establish the Mach number prediction model by combining the 1D-CNN algorithm with the LSTM model,which has long and short-term memory functions.Then,the attention mechanism is incorporated into the CNN-LSTM prediction model to enable the model to focus more on data with greater information importance,thereby enhancing the model's training effectiveness.The application results ultimately demonstrate the efficacy of the proposed approach. 展开更多
关键词 Wind tunnel Test Mach Number prediction CNN-LSTM Attention Mechanism
下载PDF
Predicting geological hazards during tunnel construction 被引量:26
2
作者 Shucai Li Shuchen Li Qingsong Zhang Yiguo Xue Bin Liu Maoxin Su Zhechao Wang Shugang Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第3期232-242,共11页
The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective... The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective features,such as faults,karst caves and groundwater,has important practical significances and theoretical values.In this paper,we presented the criteria for detecting typical geological anomalies using the tunnel seismic prediction(TSP) method.The ground penetrating radar(GPR) signal response to water-bearing structures was used for theoretical derivations.And the 3D tomography of the transient electromagnetic method(TEM) was used to develop an equivalent conductance method.Based on the improvement of a single prediction technique,we developed a technical system for reliable prediction of geological defective features by analyzing the advantages and disadvantages of all prediction methods.The procedure of the application of this system was introduced in detail.For prediction,the selection of prediction methods is an important and challenging work.The analytic hierarchy process(AHP) was developed for prediction optimization.We applied the newly developed prediction system to several important projects in China,including Hurongxi highway,Jinping II hydropower station,and Kiaochow Bay subsea tunnel.The case studies show that the geological defective features can be successfully detected with good precision and efficiency,and the prediction system is proved to be an effective means to minimize the risks of geological hazards during tunnel construction. 展开更多
关键词 tunnel projects geological hazards comprehensive prediction tunnel seismic prediction(TSP) ground penetrating radar(GPR) transient electromagnetic method(TEM) analytic hierarchy process(AHP)
下载PDF
Estimation of convergence of a high-speed railway tunnel in weak rocks using an adaptive neuro-fuzzy inference system(ANFIS) approach
3
作者 A.C.Adoko Li Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 2012年第1期11-18,共8页
Estimation of tunnel diameter convergence is a very important issue for tunneling construction,especially when the new Austrian tunneling method(NATM) is adopted.For this purpose,a systematic convergence measurement... Estimation of tunnel diameter convergence is a very important issue for tunneling construction,especially when the new Austrian tunneling method(NATM) is adopted.For this purpose,a systematic convergence measurement is usually implemented to adjust the design during the whole construction,and consequently deadly hazards can be prevented.In this study,a new fuzzy model capable of predicting the diameter convergences of a high-speed railway tunnel was developed on the basis of adaptive neuro-fuzzy inference system(ANFIS) approach.The proposed model used more than 1 000 datasets collected from two different tunnels,i.e.Daguan tunnel No.2 and Yaojia tunnel No.1,which are part of a tunnel located in Hunan Province,China.Six Takagi-Sugeno fuzzy inference systems were constructed by using subtractive clustering method.The data obtained from Daguan tunnel No.2 were used for model training,while the data from Yaojia tunnel No.1 were employed to evaluate the performance of the model.The input parameters include surrounding rock masses(SRM) rating index,ground engineering conditions(GEC) rating index,tunnel overburden(H),rock density(?),distance between monitoring station and working face(D),and elapsed time(T).The model’s performance was assessed by the variance account for(VAF),root mean square error(RMSE),mean absolute percentage error(MAPE) as well as the coefficient of determination(R2) between measured and predicted data as recommended by many researchers.The results showed excellent prediction accuracy and it was suggested that the proposed model can be used to estimate the tunnel convergence and convergence velocity. 展开更多
关键词 tunnel convergence prediction new Austrian tunneling method (NATM) adaptive neurc -fuzzy inference system(ANF1S) subtractive clustering
下载PDF
Realtime prediction of hard rock TBM advance rate using temporal convolutional network(TCN)with tunnel construction big data
4
作者 Zaobao LIU Yongchen WANG +2 位作者 Long LI Xingli FANG Junze WANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第4期401-413,共13页
Real-time dynamic adjustment of the tunnel bore machine(TBM)advance rate according to the rockmachine interaction parameters is of great significance to the adaptability of TBM and its efficiency in construction.This ... Real-time dynamic adjustment of the tunnel bore machine(TBM)advance rate according to the rockmachine interaction parameters is of great significance to the adaptability of TBM and its efficiency in construction.This paper proposes a real-time predictive model of TBM advance rate using the temporal convolutional network(TCN),based on TBM construction big data.The prediction model was built using an experimental database,containing 235 data sets,established from the construction data from the Jilin Water-Diversion Tunnel Project in China.The TBM operating parameters,including total thrust,cutterhead rotation,cutterhead torque and penetration rate,are selected as the input parameters of the model.The TCN model is found outperforming the recurrent neural network(RNN)and long short-term memory(LSTM)model in predicting the TBM advance rate with much smaller values of mean absolute percentage error than the latter two.The penetration rate and cutterhead torque of the current moment have significant influence on the TBM advance rate of the next moment.On the contrary,the influence of the cutterhead rotation and total thrust is moderate.The work provides a new concept of real-time prediction of the TBM performance for highly efficient tunnel construction. 展开更多
关键词 hard rock tunnel tunnel bore machine advance rate prediction temporal convolutional networks soft computing construction big data
原文传递
An improved artificial bee colony-random forest(IABC-RF)model for predicting the tunnel deformation due to an adjacent foundation pit excavation 被引量:3
5
作者 Tugen Feng Chaoran Wang +2 位作者 Jian Zhang Bin Wang Yin-Fu Jin 《Underground Space》 SCIE EI 2022年第4期514-527,共14页
An improved artificial bee colony-random forest(IABC-RF)model is proposed for predicting the tunnel deformation due to the excavation of an adjacent foundation pit.A new search strategy of the artificial bee colony(AB... An improved artificial bee colony-random forest(IABC-RF)model is proposed for predicting the tunnel deformation due to the excavation of an adjacent foundation pit.A new search strategy of the artificial bee colony(ABC)algorithm is herein developed and incorporated,with the results showing that a much higher computational efficiency can be achieved with the new model,while high computational accuracy can also be maintained.The improved ABC algorithm is thereafter utilised and combined with the random forest(RF)model,where four important hyper-parameters are optimized,for a tunnel deformation prediction.Results are thoroughly compared with those of other prediction methods based on machine learning(ML),as well as the monitored data on the site.Via the comparisons,the validity and effectiveness of the proposed model are fully demonstrated,and a more promising perspective can be seen of the method for its potential wide applications in geotechnical engineering. 展开更多
关键词 tunnel deformation prediction Improved artificial bee colony algorithm Random forest Hyper-parametric optimization search
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部