This paper conducts a theoretical analysis of ground settlements due to shield tunneling in multi-layered soils which are usually encountered in urban areas.The proposed theoretical solution which is based on the gene...This paper conducts a theoretical analysis of ground settlements due to shield tunneling in multi-layered soils which are usually encountered in urban areas.The proposed theoretical solution which is based on the general form of the Mindlin’s solution and Loganathan-Poulos formula can comprehensively consider the in-process tunneling parameters including:unbalanced face pressure,shield-soil friction,unbalanced tail grouting pressure,unbalanced secondary grouting pressure,overloading during tunneling and the ground volume loss.The method is verified by comparing with the field data from the Qinghuayuan Tunnel Project in terms of the ground surface settlements along the longitudinal and transverse direction.Due to the local settlement or heave caused by the certain tunneling parameters,the ground surface settlements calculated using current solution along the longitudinal direction presents an irregular S-shaped curve instead of the traditional S-shaped curve.Results also find that the effect of the unbalanced secondary grouting pressure and the overloading during tunneling cannot be ignored.展开更多
A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field m...A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field model using more different truncated solid conical blocks to clarify the multiblock failure mechanism.Furthermore,the shape of blocks between the failure surface and the tunnel face was considered as an entire circle,and the supporting pressure was assumed as non-uniform distribution on the tunnel face and increased with the tunnel embedded depth.The ground surface settlements and failure mechanism above large-diameter shield tunnels were also investigated under different supporting pressures by the finite difference method.展开更多
This study tried to explore the ground movement induced by triple stacked tunneling(TST) with different construction sequences. A case study in Tianjin, China was used to investigate the ground movement during the TST...This study tried to explore the ground movement induced by triple stacked tunneling(TST) with different construction sequences. A case study in Tianjin, China was used to investigate the ground movement during the TST(upper tunneling(UT)). For this, a modified Peck formula was proposed to predict the surface settlement induced by TST. Next, three sets of finite element analyses(FEA) were used to compare the effects of construction sequences(i.e. UT, middle tunneling(MT), and lower tunneling(LT)) on vertical and lateral ground displacements. The results of Tianjin case and UT reveal that compared to a Gaussian distribution for a single tunnel, the surface settlement curve of triple stacked tunnels is a bimodal distribution. It seems that the proposed modified Peck formula can effectively predict the surface settlement induced by TST. The results of the three sets of FEA demonstrate that the construction sequence has a significant influence on the ground movement. Among the three construction sequences, the largest lateral displacement is observed in the MT and the smallest one in UT.The existing tunnel has an inhibitory effect on the vertical displacement. The maximum value of the lateral displacement occurs at the depth of the new tunnel in each construction sequence.展开更多
In this paper,the results of a parametric study on groundwater drawdown-induced surface settlement during tunneling in waterbearing ground are presented.A calibrated stress–pore pressure coupled finite element model ...In this paper,the results of a parametric study on groundwater drawdown-induced surface settlement during tunneling in waterbearing ground are presented.A calibrated stress–pore pressure coupled finite element model was adopted for the parametric analysis.The results were analyzed to establish the relationships between key design issues,such as the ground surface settlement and groundwater drawdown,and influencing factors.An artificial neural network(ANN)-based sensitivity analysis was performed to obtain insight into the relative importance of the influencing factors.The results indicated that the primary influencing factors on the settlement development are the thickness and stiffness of the soil layer within the drawdown zone and the lining permeability,while the initial void ratio and the permeability of the soil layer were considered secondary influencing factors.Practical implications and findings of the study are discussed.展开更多
基金support by the National Natural Science Foundation of China(Grant Nos.52108376,51738002,and 52090084)China Postdoctoral Science Foundation(Grant No.2022 T150436).
文摘This paper conducts a theoretical analysis of ground settlements due to shield tunneling in multi-layered soils which are usually encountered in urban areas.The proposed theoretical solution which is based on the general form of the Mindlin’s solution and Loganathan-Poulos formula can comprehensively consider the in-process tunneling parameters including:unbalanced face pressure,shield-soil friction,unbalanced tail grouting pressure,unbalanced secondary grouting pressure,overloading during tunneling and the ground volume loss.The method is verified by comparing with the field data from the Qinghuayuan Tunnel Project in terms of the ground surface settlements along the longitudinal and transverse direction.Due to the local settlement or heave caused by the certain tunneling parameters,the ground surface settlements calculated using current solution along the longitudinal direction presents an irregular S-shaped curve instead of the traditional S-shaped curve.Results also find that the effect of the unbalanced secondary grouting pressure and the overloading during tunneling cannot be ignored.
基金Project(41202220) supported by the National Natural Science Foundation of ChinaProject(2011YYL034) supported by the Fundamental Research Funds for the Central Universities,China
文摘A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field model using more different truncated solid conical blocks to clarify the multiblock failure mechanism.Furthermore,the shape of blocks between the failure surface and the tunnel face was considered as an entire circle,and the supporting pressure was assumed as non-uniform distribution on the tunnel face and increased with the tunnel embedded depth.The ground surface settlements and failure mechanism above large-diameter shield tunnels were also investigated under different supporting pressures by the finite difference method.
基金financially supported by the Open Project of the State Key Laboratory of Disaster Reduction in Civil Engineering (Grant No. SLDRCE17-01)the National Key Research and Development Program of China (Grant No.2017YFC0805402)the National Natural Science Foundation of China (Grant No. 51808387)。
文摘This study tried to explore the ground movement induced by triple stacked tunneling(TST) with different construction sequences. A case study in Tianjin, China was used to investigate the ground movement during the TST(upper tunneling(UT)). For this, a modified Peck formula was proposed to predict the surface settlement induced by TST. Next, three sets of finite element analyses(FEA) were used to compare the effects of construction sequences(i.e. UT, middle tunneling(MT), and lower tunneling(LT)) on vertical and lateral ground displacements. The results of Tianjin case and UT reveal that compared to a Gaussian distribution for a single tunnel, the surface settlement curve of triple stacked tunnels is a bimodal distribution. It seems that the proposed modified Peck formula can effectively predict the surface settlement induced by TST. The results of the three sets of FEA demonstrate that the construction sequence has a significant influence on the ground movement. Among the three construction sequences, the largest lateral displacement is observed in the MT and the smallest one in UT.The existing tunnel has an inhibitory effect on the vertical displacement. The maximum value of the lateral displacement occurs at the depth of the new tunnel in each construction sequence.
基金This work was supported by Grant No.2014004636 from the Basic Research Program of the Korea Science&Engineering Foundation as well as Grant No.13CCTI-T01 from the Ministry of Land,Transport and Maritime Affairs,Korea.The financial support is gratefully acknowledged.
文摘In this paper,the results of a parametric study on groundwater drawdown-induced surface settlement during tunneling in waterbearing ground are presented.A calibrated stress–pore pressure coupled finite element model was adopted for the parametric analysis.The results were analyzed to establish the relationships between key design issues,such as the ground surface settlement and groundwater drawdown,and influencing factors.An artificial neural network(ANN)-based sensitivity analysis was performed to obtain insight into the relative importance of the influencing factors.The results indicated that the primary influencing factors on the settlement development are the thickness and stiffness of the soil layer within the drawdown zone and the lining permeability,while the initial void ratio and the permeability of the soil layer were considered secondary influencing factors.Practical implications and findings of the study are discussed.