Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
During dislocation,a tunnel crossing the active fault will be damaged to varying degrees due to its permanent stratum displacement.Most previous studies did not consider the influence of the tunnel’s deep burial and ...During dislocation,a tunnel crossing the active fault will be damaged to varying degrees due to its permanent stratum displacement.Most previous studies did not consider the influence of the tunnel’s deep burial and the high in-situ stress,so the results were not entirely practical.In this paper,the necessity of solving the anti-dislocation problem of deep-buried tunnels is systemically discussed.Through the model test of tunnels across active faults,the differences in failures between deep-buried tunnels and shallow-buried tunnels were compared,and the dislocation test of deep-buried segmental tunnels was carried out to analyze the external stress change,lining strain,and failure mode of tunnels.The results are as follows.(1)The overall deformation of deep-buried and shallow-buried tunnels is both Sshaped.The failure mode of deep-buried tunnels is primarily characterized by shear and tensile failure,resulting in significant compressive deformation and a larger damaged area.In contrast,shallow-buried tunnels mainly experience shear failure,with the tunnel being sheared apart at the fault crossing,leading to more severe damage.(2)After the segmental structure design of the deep-buried tunnel,the‘‘S”deformation pattern is transformed into a‘‘ladder”pattern,and the strain of the tunnel and the peak stress of the external rock mass are reduced;therefore,damages are significantly mitigated.(3)Through the analysis of the distribution of cracks in the tunnel lining,it is found that the tunnel without a segmental structure design has suffered from penetrating failure and that cracks affect the entire lining.The cracks in a flexible segmental tunnel affect about 66.6%of the entire length of the tunnel,and cracks in a tunnel with a short segmental tunnel only affect about 33.3%of the entire length of the tunnel.Therefore,a deep-buried tunnel with a short segmental tunnel can yield a better anti-dislocation effect.(4)By comparing the shallow-buried segmental tunnel in previous studies,it is concluded that the shallow-buried segmental tunnel will also suffer from deformation outside the fault zone,while the damages to the deep-buried segmental tunnel are concentrated in the fault zone,so the anti-dislocation protection measures of the deep-buried tunnel shall be provided mainly in the fault zone.The results of the above study can provide theoretical reference and technical support for the design and reinforcement measures of the tunnel crossing active fault under high in-situ stress conditions.展开更多
Rockburst problems induced by high in-situ stresses were prominent during construction of the headrace tunnels of Jinping II hydropower station. The rockbursts occurred in various forms, and it is necessary to take pe...Rockburst problems induced by high in-situ stresses were prominent during construction of the headrace tunnels of Jinping II hydropower station. The rockbursts occurred in various forms, and it is necessary to take pertinent measures for integrated prevention and control of rockbursts. In view of the rockburst characteristics during tunnel construction of Jinping II hydropower station, the engineering geological conditions were presented, and the features, mechanisms and forms of rockbursts observed during construction were analyzed in detail. A large number of scientific researches, experiments and applications were conducted. Multiple measures were adopted to prevent and control rockbursts, including the prediction and early warning measures, stress relief by blasting in advance, optimized blasting design and optimized tunnel support in the tunnel sections prone to strong rockbursts. The effectiveness of these prevention and control measures was evaluated. Experiences have been accumulated through a great number of helpful explorations and practices for rockburst prevention and control. A comprehensive rockburst prevention and control system has been gradually established.展开更多
Rockburst has perennially posed a formidable challenge to the stability of underground engineering works,particularly under conditions of deep-seated high stress.This paper provides a comprehensive review of recent ad...Rockburst has perennially posed a formidable challenge to the stability of underground engineering works,particularly under conditions of deep-seated high stress.This paper provides a comprehensive review of recent advancements in on-site research related to rockburst occurrences,covering on-site case analyses,monitoring methodologies,early warning systems,and risk(proneness)evaluation.Initially,the concepts and classifications of rockburst based on on-site understanding were summarized.The influences of structural planes(in various spatial distribution combinations),in-situ stress(particularly magnitude and direction of the principal stress),dynamic disturbances,and excavation profiles on rockburst were thoroughly assessed and discussed through the analysis of published rockburst cases and on-site survey results.Subsequently,a compendium of commonly employed on-site monitoring techniques was outlined,delineating their respective technical attributes.Particular emphasis is accorded to the efficacy of microseismic monitoring technology and its prospective utility in facilitating dynamic rockburst early warning mechanisms.Building upon this foundation,the feasibility of assessing rockburst propensity while considering on-site variables is verified,encompassing the selection and quantitative evaluation of pertinent indicators.Ultimately,a comprehensive synthesis of the paper is presented,alongside the articulation of prospective research goals for the future.展开更多
The prediction of the stress field of deep-buried tunnels is a fundamental problem for scientists and engineers. In this study, the authors put forward a systematic solution for this problem. Databases from the World ...The prediction of the stress field of deep-buried tunnels is a fundamental problem for scientists and engineers. In this study, the authors put forward a systematic solution for this problem. Databases from the World Stress Map and the Crustal Stress of China, and previous research findings can offer prediction of stress orientations in an engineering area. At the same time, the Andersonian theory can be used to analyze the possible stress orientation of a region. With limited in-situ stress measurements, the Hock-Brown Criterion can be used to estimate the strength of rock mass in an area of interest by utilizing the geotechnical investigation data, and the modified Sheorey's model can subsequently be employed to predict the areas' stress profile, without stress data, by taking the existing in-situ stress measurements as input parameters. In this paper, a case study was used to demonstrate the application of this systematic solution. The planned Kohala hydropower plant is located on the western edge of Qinghai-Tibet Plateau. Three hydro-fracturing stress measurement campaigns indicated that the stress state of the area is SH - Sh 〉 Sv or SH 〉Sv 〉 Sh. The measured orientation of Sn is NEE (N70.3°-89°E), and the regional orientation of SH from WSM is NE, which implies that the stress orientation of shallow crust may be affected by landforms. The modified Sheorey model was utilized to predict the stress profile along the water sewage tunnel for the plant. Prediction results show that the maximum and minimum horizontal principal stres- ses of the points with the greatest burial depth were up to 56.70 and 40.14 MPa, respectively, and the stresses of areas with a burial depth of greater than 500 m were higher. Based on the predicted stress data, large deformations of the rock mass surrounding water conveyance tunnels were analyzed. Results showed that the large deformations will occur when the burial depth exceeds 300 m. When the burial depth is beyond 800 m, serious squeezing deformations will occur in the surrounding rock masses, thus requiring more attention in the design and construction. Based on the application efficiency in this case study, this prediction method proposed in this paper functions accurately.展开更多
To investigate the failure process and characteristics of D-shaped tunnels under different maximum principal stress directions θ, true-triaxial tests were conducted on cubic sandstone samples with a through D-shaped ...To investigate the failure process and characteristics of D-shaped tunnels under different maximum principal stress directions θ, true-triaxial tests were conducted on cubic sandstone samples with a through D-shaped hole. The test results show that the failure process can be divided into 4 periods:calm, buckling deformation, gradual buckling and exfoliation of rock fragment, and formation of a Vshaped notch. With an increase in θ from 0° to 90°, the size of the rock fragments first decreases and then increases, whereas the fractal dimension of the rock fragments first increases and then decreases. Meanwhile, the failure position at the left side shifts from the sidewall to the corner and finally to the floor, whereas the failure position at the right side moves from the sidewall to the spandrel and finally to the roof, which is consistent with the failure position in underground engineering. In addition, the initial vertical failure stress first decreases and then increases. By comparing the results,the failure severities at different maximum principal stress directions can be ranked from high to low in the following order: 90°>60°>30°>45°>0°.展开更多
As mining delves deeper into the crust, it is necessary to investigate the complex rock responses associated with higher stress gradients. Therefore, it is essential to better understand the mechanisms associated with...As mining delves deeper into the crust, it is necessary to investigate the complex rock responses associated with higher stress gradients. Therefore, it is essential to better understand the mechanisms associated with the rockburst phenomenon. However, due to the large-scale and difficult monitoring of real mining excavations, laboratory scale tests must be utilised to determine the conditions conducive to burst. To this end, this research focuses on the implementation of a new rockburst testing apparatus to replicate the stress conditions of a rock mass excavation at the time of bursting. This apparatus allows the determination of rockburst stresses and a relationship between deviatoric stress and in-situ pressure/depth. Using this relationship it is then possible to estimate the standardised stress levels for a certain rock type which might lead to rockburst occurrence. Furthermore, it is demonstrated that with increasing in-situ pressure, the likelihood(measured as a lower differential stress) and the extent(indicated by the increasing range of deviatoric stress) of rockburst increases. These findings provide valuable information about the conditions necessary for bursting in deep mining.展开更多
In this study, it was assumed that three-dimensional penny-shaped cracks existed in deep rock masses. A new non-Euclidean model was established, in which the effects of penny- shaped cracks and axial in-situ stress on...In this study, it was assumed that three-dimensional penny-shaped cracks existed in deep rock masses. A new non-Euclidean model was established, in which the effects of penny- shaped cracks and axial in-situ stress on zonal disintegration of deep rock masses were taken into account. Based on the non-Euclidean model, the stress intensity factors at tips of the penny- shaped cracks were determined. The strain energy density factor was applied to investigate the occurrence of fractured zones. It was observed from the numerical results that the magnitude and location of fractured zones were sensitive to micro- and macro-mechanical parameters, as well as the value of in-situ stress. The numerical results were in good agreement with the experimental data.展开更多
Extreme ground behaviour in high-stress rock masses such as rockburst prone and squeezing ground conditions are encountered in a range of underground projects both in civil and mining applications.The occurrence of su...Extreme ground behaviour in high-stress rock masses such as rockburst prone and squeezing ground conditions are encountered in a range of underground projects both in civil and mining applications.The occurrence of such ground behaviour types are difficult to predict and special design and construction measures must be taken to control them.Determining the most appropriate support system in such grounds is one of the major challenges for ground control engineers because there are many contributing factors to be considered,such as the rock mass parameters,the stress condition,the type and performance of the support systems,the condition of major geological structures and the size and geometry of the underground excavation.The main characteristics and support requirements of rockburst-prone and squeezing ground conditions are herein critically reviewed and characteristics of support functions are discussed.Different types of energy-absorbing rockbolts and other support elements applicable for ground support in burst-prone and squeezing grounds are introduced.Important differences in the choice and economics of ground support strategies in high-stress ground conditions between civil tunnels and mining excavations are discussed.Ground support benchmarking data and mitigation measures for mines and civil tunnels in burst-prone,squeezing and heavily swelling grounds conditions are briefly presented by some examples in practice.展开更多
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
基金supported by the National Key R&D Programs for Young Scientists of China(Grant No.2023YFB2390400)the National Natural Science Foundation of China(Grant Nos.U21A20159,52079133,52379112,and 41902288)+2 种基金Key Research Program of First Survey and Design Institute(Grant No.2022KY56(ZDZX)-02)Key Research Program of the Ministry of Water Resources of China(Grant No.SKS-2022103)Yunnan Major Science and Technology Special Program(Grant No.202102AF080001).
文摘During dislocation,a tunnel crossing the active fault will be damaged to varying degrees due to its permanent stratum displacement.Most previous studies did not consider the influence of the tunnel’s deep burial and the high in-situ stress,so the results were not entirely practical.In this paper,the necessity of solving the anti-dislocation problem of deep-buried tunnels is systemically discussed.Through the model test of tunnels across active faults,the differences in failures between deep-buried tunnels and shallow-buried tunnels were compared,and the dislocation test of deep-buried segmental tunnels was carried out to analyze the external stress change,lining strain,and failure mode of tunnels.The results are as follows.(1)The overall deformation of deep-buried and shallow-buried tunnels is both Sshaped.The failure mode of deep-buried tunnels is primarily characterized by shear and tensile failure,resulting in significant compressive deformation and a larger damaged area.In contrast,shallow-buried tunnels mainly experience shear failure,with the tunnel being sheared apart at the fault crossing,leading to more severe damage.(2)After the segmental structure design of the deep-buried tunnel,the‘‘S”deformation pattern is transformed into a‘‘ladder”pattern,and the strain of the tunnel and the peak stress of the external rock mass are reduced;therefore,damages are significantly mitigated.(3)Through the analysis of the distribution of cracks in the tunnel lining,it is found that the tunnel without a segmental structure design has suffered from penetrating failure and that cracks affect the entire lining.The cracks in a flexible segmental tunnel affect about 66.6%of the entire length of the tunnel,and cracks in a tunnel with a short segmental tunnel only affect about 33.3%of the entire length of the tunnel.Therefore,a deep-buried tunnel with a short segmental tunnel can yield a better anti-dislocation effect.(4)By comparing the shallow-buried segmental tunnel in previous studies,it is concluded that the shallow-buried segmental tunnel will also suffer from deformation outside the fault zone,while the damages to the deep-buried segmental tunnel are concentrated in the fault zone,so the anti-dislocation protection measures of the deep-buried tunnel shall be provided mainly in the fault zone.The results of the above study can provide theoretical reference and technical support for the design and reinforcement measures of the tunnel crossing active fault under high in-situ stress conditions.
文摘Rockburst problems induced by high in-situ stresses were prominent during construction of the headrace tunnels of Jinping II hydropower station. The rockbursts occurred in various forms, and it is necessary to take pertinent measures for integrated prevention and control of rockbursts. In view of the rockburst characteristics during tunnel construction of Jinping II hydropower station, the engineering geological conditions were presented, and the features, mechanisms and forms of rockbursts observed during construction were analyzed in detail. A large number of scientific researches, experiments and applications were conducted. Multiple measures were adopted to prevent and control rockbursts, including the prediction and early warning measures, stress relief by blasting in advance, optimized blasting design and optimized tunnel support in the tunnel sections prone to strong rockbursts. The effectiveness of these prevention and control measures was evaluated. Experiences have been accumulated through a great number of helpful explorations and practices for rockburst prevention and control. A comprehensive rockburst prevention and control system has been gradually established.
基金Project(2023YFB2603602)supported by the National Key Research and Development Program of ChinaProjects(52222810,52178383)supported by the National Natural Science Foundation of China。
文摘Rockburst has perennially posed a formidable challenge to the stability of underground engineering works,particularly under conditions of deep-seated high stress.This paper provides a comprehensive review of recent advancements in on-site research related to rockburst occurrences,covering on-site case analyses,monitoring methodologies,early warning systems,and risk(proneness)evaluation.Initially,the concepts and classifications of rockburst based on on-site understanding were summarized.The influences of structural planes(in various spatial distribution combinations),in-situ stress(particularly magnitude and direction of the principal stress),dynamic disturbances,and excavation profiles on rockburst were thoroughly assessed and discussed through the analysis of published rockburst cases and on-site survey results.Subsequently,a compendium of commonly employed on-site monitoring techniques was outlined,delineating their respective technical attributes.Particular emphasis is accorded to the efficacy of microseismic monitoring technology and its prospective utility in facilitating dynamic rockburst early warning mechanisms.Building upon this foundation,the feasibility of assessing rockburst propensity while considering on-site variables is verified,encompassing the selection and quantitative evaluation of pertinent indicators.Ultimately,a comprehensive synthesis of the paper is presented,alongside the articulation of prospective research goals for the future.
基金provided by the National Natural Science Foundation of China – China (No. 41274100)the Fundamental Research Fund for State Level Scientific Institutes (No. ZDJ2012-20)
文摘The prediction of the stress field of deep-buried tunnels is a fundamental problem for scientists and engineers. In this study, the authors put forward a systematic solution for this problem. Databases from the World Stress Map and the Crustal Stress of China, and previous research findings can offer prediction of stress orientations in an engineering area. At the same time, the Andersonian theory can be used to analyze the possible stress orientation of a region. With limited in-situ stress measurements, the Hock-Brown Criterion can be used to estimate the strength of rock mass in an area of interest by utilizing the geotechnical investigation data, and the modified Sheorey's model can subsequently be employed to predict the areas' stress profile, without stress data, by taking the existing in-situ stress measurements as input parameters. In this paper, a case study was used to demonstrate the application of this systematic solution. The planned Kohala hydropower plant is located on the western edge of Qinghai-Tibet Plateau. Three hydro-fracturing stress measurement campaigns indicated that the stress state of the area is SH - Sh 〉 Sv or SH 〉Sv 〉 Sh. The measured orientation of Sn is NEE (N70.3°-89°E), and the regional orientation of SH from WSM is NE, which implies that the stress orientation of shallow crust may be affected by landforms. The modified Sheorey model was utilized to predict the stress profile along the water sewage tunnel for the plant. Prediction results show that the maximum and minimum horizontal principal stres- ses of the points with the greatest burial depth were up to 56.70 and 40.14 MPa, respectively, and the stresses of areas with a burial depth of greater than 500 m were higher. Based on the predicted stress data, large deformations of the rock mass surrounding water conveyance tunnels were analyzed. Results showed that the large deformations will occur when the burial depth exceeds 300 m. When the burial depth is beyond 800 m, serious squeezing deformations will occur in the surrounding rock masses, thus requiring more attention in the design and construction. Based on the application efficiency in this case study, this prediction method proposed in this paper functions accurately.
基金This work was supported by the National Natural Science Foun-dation of China(Nos.52174098,41630642,and 51904335).
文摘To investigate the failure process and characteristics of D-shaped tunnels under different maximum principal stress directions θ, true-triaxial tests were conducted on cubic sandstone samples with a through D-shaped hole. The test results show that the failure process can be divided into 4 periods:calm, buckling deformation, gradual buckling and exfoliation of rock fragment, and formation of a Vshaped notch. With an increase in θ from 0° to 90°, the size of the rock fragments first decreases and then increases, whereas the fractal dimension of the rock fragments first increases and then decreases. Meanwhile, the failure position at the left side shifts from the sidewall to the corner and finally to the floor, whereas the failure position at the right side moves from the sidewall to the spandrel and finally to the roof, which is consistent with the failure position in underground engineering. In addition, the initial vertical failure stress first decreases and then increases. By comparing the results,the failure severities at different maximum principal stress directions can be ranked from high to low in the following order: 90°>60°>30°>45°>0°.
基金the Australian Research Council (No.LP150100539)
文摘As mining delves deeper into the crust, it is necessary to investigate the complex rock responses associated with higher stress gradients. Therefore, it is essential to better understand the mechanisms associated with the rockburst phenomenon. However, due to the large-scale and difficult monitoring of real mining excavations, laboratory scale tests must be utilised to determine the conditions conducive to burst. To this end, this research focuses on the implementation of a new rockburst testing apparatus to replicate the stress conditions of a rock mass excavation at the time of bursting. This apparatus allows the determination of rockburst stresses and a relationship between deviatoric stress and in-situ pressure/depth. Using this relationship it is then possible to estimate the standardised stress levels for a certain rock type which might lead to rockburst occurrence. Furthermore, it is demonstrated that with increasing in-situ pressure, the likelihood(measured as a lower differential stress) and the extent(indicated by the increasing range of deviatoric stress) of rockburst increases. These findings provide valuable information about the conditions necessary for bursting in deep mining.
基金supported by the 973 Project(No.2014CB046903)the National Natural Science Foundation of China(Nos.51325903 and 51279218)the Natural Science Foundation Project of CQ CSTC(Nos.CSTC2013KJRC-1JRCCJ30001 and CSTC2013JCYJYS0005)
文摘In this study, it was assumed that three-dimensional penny-shaped cracks existed in deep rock masses. A new non-Euclidean model was established, in which the effects of penny- shaped cracks and axial in-situ stress on zonal disintegration of deep rock masses were taken into account. Based on the non-Euclidean model, the stress intensity factors at tips of the penny- shaped cracks were determined. The strain energy density factor was applied to investigate the occurrence of fractured zones. It was observed from the numerical results that the magnitude and location of fractured zones were sensitive to micro- and macro-mechanical parameters, as well as the value of in-situ stress. The numerical results were in good agreement with the experimental data.
文摘Extreme ground behaviour in high-stress rock masses such as rockburst prone and squeezing ground conditions are encountered in a range of underground projects both in civil and mining applications.The occurrence of such ground behaviour types are difficult to predict and special design and construction measures must be taken to control them.Determining the most appropriate support system in such grounds is one of the major challenges for ground control engineers because there are many contributing factors to be considered,such as the rock mass parameters,the stress condition,the type and performance of the support systems,the condition of major geological structures and the size and geometry of the underground excavation.The main characteristics and support requirements of rockburst-prone and squeezing ground conditions are herein critically reviewed and characteristics of support functions are discussed.Different types of energy-absorbing rockbolts and other support elements applicable for ground support in burst-prone and squeezing grounds are introduced.Important differences in the choice and economics of ground support strategies in high-stress ground conditions between civil tunnels and mining excavations are discussed.Ground support benchmarking data and mitigation measures for mines and civil tunnels in burst-prone,squeezing and heavily swelling grounds conditions are briefly presented by some examples in practice.