期刊文献+
共找到986篇文章
< 1 2 50 >
每页显示 20 50 100
Propagation characteristics of vibration waves induced in surrounding rock by tunneling blasting 被引量:4
1
作者 chen shi-hai hu shuai-wei +1 位作者 zhang zi-hua wu jian 《Journal of Mountain Science》 SCIE CSCD 2017年第12期2620-2630,共11页
The effect of blasting vibration waves on surrounding rock and supporting structures is an important field in underground engineering. In this paper, the separation variable method is used to solve the displacement po... The effect of blasting vibration waves on surrounding rock and supporting structures is an important field in underground engineering. In this paper, the separation variable method is used to solve the displacement potential function for the propagation of the blasting vibration waves. In the axis coordinate system, the particle motion and stress change with axial distance, radial distance and time is obtained in surrounding rock. The peak particle velocity law in surrounding rock under different blast loads and surrounding rock parameters is discussed.In addition, the particle vibration characteristics in the surrounding rock are studied using numerical simulations method. The results shows that the peak particle velocity in surrounding rock appears negative exponent attenuation with the increase of axial distance, but it appears positive and negative fluctuations in radial direction. This phenomenon is a new discovery and it has been rarely investigated before. Moreover, the peak particle velocity attenuates more quickly and intensely in the near blasting field,which means that the supporting structure in a shorter distance away from the heading face is vulnerable to the impact of blasting vibration. Theattenuation of blasting vibration velocity is closely related to charge length, blasting load amplitude,attenuation index and rock elastic modulus. The numerical simulation accomplishes the same results and then demonstrates the validity of theoretical results. 展开更多
关键词 tunneling blasting blasting vibration wave Surrounding rock Wave equation Vibration velocity
下载PDF
A comparison of seismic response to conventional and face destress blasting during deep tunnel development 被引量:2
2
作者 C.Drover E.Villaescusa 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第5期965-978,共14页
A novel design of development face destress blasting was implemented during the construction of an experimental tunnel at great depth.A second tunnel was developed nearby using conventional blasting as a control.The t... A novel design of development face destress blasting was implemented during the construction of an experimental tunnel at great depth.A second tunnel was developed nearby using conventional blasting as a control.The tunnels were developed parallel to one another and perpendicular to a high subhorizontal stress.High resolution seismic monitoring was used to record and compare the seismic response generated by each excavation.Analysis of the seismic data from the conventionally blasted tunnel indicated that the seismogenic zone of stress-driven instability extended up to 3.6 m ahead of the face.Destress blasting within the corresponding zone of the adjacent tunnel had the effect of reducing the rock mass stiffness,primarily due to weakening of the pre-existing natural discontinuities.The reduction in rock mass stiffness was inferred from the spatial broadening of the seismogenic zone and associated reduction in the measured spatial density of events,radiated energy and seismic potency ahead of the face.High strain gradients around the unsupported portion of the conventionally blasted excavation were implied by the rate at which the spatial density of seismicity changed with respect to the tunnel face position.In contrast,the change in the spatial density of seismicity around the destressed development face was much more gradual.This was indicative of lower strain gradients in the rock there.A reduction in rock mass stiffness following destress blasting was also indicated by the much wider variety of seismic source mechanisms recorded adjacent to the destressed tunnel.Seismic source mechanisms associated with destress blasting were also more clearly characteristic of compressive overstressing with fracture closure.The source mechanism data also indicated that destress blasting induced instability on all natural joint sets.When compared to conventional development blasting,destress blasting typically reduced violent strain energy release from the rock mass and the associated seismicity,but not always. 展开更多
关键词 Destress blasting Mining-induced SEISMICITY ROCK fracture Deep mining tunnelLING
下载PDF
Vibration reduction technology and the mechanisms of surrounding rock damage from blasting in neighborhood tunnels with small clearance 被引量:3
3
作者 Xiaodong Wu Min Gong +2 位作者 Haojun Wu Guangfeng Hu Sijie Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第5期625-637,共13页
Interlaid rock is an important component in the construction of neighborhood tunnels that supports and reinforces the area between two tunnels.However,the blasting load during excavation can sometimes damage the inter... Interlaid rock is an important component in the construction of neighborhood tunnels that supports and reinforces the area between two tunnels.However,the blasting load during excavation can sometimes damage the interlaid rock and threaten the stability of a tunnel’s structure.This paper presents a case study of the small clearance section of the Liantang highway tunnel project in Shenzhen,China,where the minimum distance between the two tunnels involved is only 0.5 m.To reduce the damage to the interlaid rock caused by blasting loads,we proposed a four-part excavation method with a vibrationcushioning rock layer in the following tunnel of neighborhood tunnels.Numerical simulation was used to model the damage prevention mechanism of the vibration-cushioning rock layer and to better understand the propagation of cracks in the interlaid rock.Furthermore,based on the simulation results,combined microseismic controlled-blasting technology was implemented,using innovative blasting patterns combined with different charge structures and blasting equipment designed according to the varying thickness of the interlaid rock.Finally,this implementation succeeded in protecting interlaid rock during blasting operations. 展开更多
关键词 Neighborhood tunnels Interlaid rock Rock damage blasting design Ground vibration
下载PDF
Vibration Effect and Damage Evolution Characteristics of Tunnel Surrounding Rock Under Cyclic Blasting Loading 被引量:1
4
作者 Guosheng Zhong Yongzhong Lou Yuhua Fu 《Journal of Beijing Institute of Technology》 EI CAS 2017年第3期324-333,共10页
Model test studies based on the similarity theory were conducted to investigate vibration effect and damage evolution characteristics of tunnel surrounding rock under push-type cyclic blasting excavation.The model was... Model test studies based on the similarity theory were conducted to investigate vibration effect and damage evolution characteristics of tunnel surrounding rock under push-type cyclic blasting excavation.The model was constructed with a ratio of 1∶15.By simulating the tunnel excavation of push-type cyclic blasting,the influence of the blasting parameter change on vibration effect was explored.The damage degree of tunnel surrounding rock was evaluated by the change of the acoustic wave velocity at the same measuring point after blasting.The relationship between the damage evolution of surrounding rock and blasting times was established.The research results show that:(1)In the same geological environment,the number of delay initiation is larger,the main vibration frequency of blasting seismic wave is higher,and the attenuation of high frequency signal in the rock and soil is faster.The influence of number of delay initiation on blasting vibration effect cannot be ignored;(2)Under push-type cyclic blasting excavation,there were great differences in the decreasing rates of acoustic wave velocity of the measuring points which have the same distance to the blasting region at the same depth,and the blasting damage ranges of surrounding rock were typically anisotropic at both depth and breadth;(3)When blasting parameters were basically kept as the same,the growth trend of the cumulative acoustic wave velocity decreasing rate at the measuring point was nonlinear under different cycle blasting excavations;(4)There were nonlinear evolution characteristics between the blasting cumulative damage(D)of surrounding rock and blasting times(n)under push-type cyclic blasting loading,and different measuring points had corresponding blasting cumulative damage propagation models,respectively.The closer the measuring point was away from the explosion source,the faster the cumulative damage extension.Blasting cumulative damage effect of surrounding rock had typically nonlinear evolution properties and anisotropic characteristics. 展开更多
关键词 cyclic blasting loading tunnel excavation vibration effect surrounding rock damage
下载PDF
Intelligent classification model of surrounding rock of tunnel using drilling and blasting method 被引量:16
5
作者 Mingnian Wang Siguang Zhao +4 位作者 Jianjun Tong Zhilong Wang Meng Yao Jiawang Li Wenhao Yi 《Underground Space》 SCIE EI 2021年第5期539-550,共12页
Classification of surrounding rock is the cornerstone of tunnel design and construction.The traditional methods are mainly qualitative and manual and require extensive professional knowledge and engineering experience... Classification of surrounding rock is the cornerstone of tunnel design and construction.The traditional methods are mainly qualitative and manual and require extensive professional knowledge and engineering experience.To minimize the effect of the empirical judgment on the accuracy of surrounding rock classification,it is necessary to reduce human participation.An intelligent classification technique based on information technology and artificial intelligence could overcome these issues.In this regard,using 299 groups of drilling parameters collected automatically using intelligent drill jumbos in tunnels for the Zhengzhou-Wanzhou high-speed railway in China,an intelligent-classification surrounding-rock database is constructed in this study.Based on a machine learning algorithm,an intelligent classification model is then developed,which has an overall accuracy of 91.9%.Finally,using the core of the model,the intelligent classification system for the surrounding rock of drilled and blasted tunnels is integrated,and the system is carried by intelligent jumbos to perform automatic recording and transmission of drilling parameters and intelligent classification of the surrounding rock.This approach provides a foundation for the dynamic design and construction(both conventional and intelligent)of tunnels. 展开更多
关键词 Drilled and blasted tunnel Drilling parameter Machine learning Intelligent classification Surrounding rock
原文传递
Kernel broken smooth particle hydrodynamics method for crack propagation simulation applied in layered rock cells and tunnels 被引量:1
6
作者 Chengzhi Xia Zhenming Shi +1 位作者 Hongchao Zheng Xiaohan Wu 《Underground Space》 SCIE EI CSCD 2023年第3期55-75,共21页
Understanding the cracking process of layered tunnels requires a high-fidelity method.Improved smooth particle hydrodynamics(SPH),termed kernel broken SPH(KBSPH),was implemented to simulate the crack propagation and d... Understanding the cracking process of layered tunnels requires a high-fidelity method.Improved smooth particle hydrodynamics(SPH),termed kernel broken SPH(KBSPH),was implemented to simulate the crack propagation and deformation of layered rock cells and field layered tunnels with dip angles of 0°–90°,and the results were compared with those of the laboratory tests.Three attempts,including the bedding angle,interlayer distance,and lateral pressure coefficient,were made to investigate the crack propagation and deformation of layered tunnels.Finally,the pros and cons of the KBSPH method applied in the rock field were compared with those of other methods.The results indicate that the KBSPH can explicitly reproduce crack propagation by improving the kernel function with a totally damaged symbol,and the deformation responses have been captured reasonably.We infer that this method is effective and rapid in crack propagation and large deformation simulation for other types of rock tunnels. 展开更多
关键词 smooth particle hydrodynamics Kernel broken Layered rock tunnel Crack propagation
原文传递
Rapid profiling rock mass quality underneath tunnel face for Sichuan-Xizang Railway
7
作者 Siyuan Wu Min Qiu +2 位作者 Zhao Yang Fuquan Ji Zhongqi Quentin Yue 《Underground Space》 SCIE EI CSCD 2024年第6期138-152,共15页
The Sichuan-Xizang Railway is a global challenge,surpassing other known railway projects in terms of geological and topographical complexity.This paper presents an approach for rapidly profiling rock mass quality unde... The Sichuan-Xizang Railway is a global challenge,surpassing other known railway projects in terms of geological and topographical complexity.This paper presents an approach for rapidly profiling rock mass quality underneath tunnel face for the ongoing construction of the Sichuan-Xizang Railway.It adopts the time-series method and carries out the quantitative analysis of the rock mass quality using the depth-series measurement-while-drilling(MWD)data associated with drilling of blastholes.A tunnel face with 15 blastholes is examined for illustration.The results include identification of the boundary of homogeneous geomaterial by plotting the blasthole depth against the net drilling time,as well as quantification of rock mass quality through the recalculation of the new specific energy.The new specific energy profile is compared and highly consistent with laboratory test,manual logging and tunnel seismic prediction results.This consistency can enhance the blasthole pattern design and facilitate the dynamic determination of charge placement and amount.This paper highlights the importance of digital monitoring during blasthole drilling for rapidly profiling rock mass quality underneath and ahead of tunnel face.It upgrades the MWD technique for rapid profiling rock mass quality in drilling and blasting tunnels. 展开更多
关键词 Measurement-while-drilling Drilling and blasting Rock mass quality New specific energy Constant penetration rate Sichuan-Xizang railway tunnelLING
原文传递
Study on Smooth Blasting Results in Jointed and Fractured Rock
8
作者 Wu Li Chen Jianping Engineering Faculty, China University of Geosciences, Wuhan 430074 《Journal of China University of Geosciences》 SCIE CSCD 2001年第2期145-149,共5页
Factors that affect blasting results may be grouped into those factors that can be controlled and those that cannot be controlled. The controllable factors include explosive properties, initiation timing, and blast ge... Factors that affect blasting results may be grouped into those factors that can be controlled and those that cannot be controlled. The controllable factors include explosive properties, initiation timing, and blast geometry. The uncontrollable factors comprise the rock’s natural structures, such as joints and fractures, and the properties, such as elastic constants, density and strength. Among these, the influence of rock structural planes often contributes a high degree of variability to blasting results. This paper presents a theoretical analysis of rock structural plane influences on smooth blasting results based on elasticity and stress wave propagation theory with an emphasis on smooth blasting techniques. Two types of simulated experiments in lab (using strain and acoustic emission measurements) are used to verify the theoretical analysis. The results show that it is difficult to achieve smooth blasting results when the angle between the natural rock structural planes and the blast induced fracture planes ranges from 10° to 60°. Among these angles, 30° is the least desirable angle to produce a smooth wall. For angles less than 10° and greater than 60°, the influence of rock structural planes on blasting results can be ignored. 展开更多
关键词 smooth blasting results jointed rock simulated experiments.
下载PDF
Study on influence of key blasthole parameters on tunnel overbreak 被引量:1
9
作者 Zi-qiang Li Zheng Li +2 位作者 Wei-wei Huang Xuan-ming Ding Hang Zhang 《Underground Space》 SCIE EI CSCD 2023年第2期76-90,共15页
To determine the influence of key blasthole parameters on tunnel overbreak during blasting construction,an intelligent detection sys-tem for tunnel blasting construction is independently developed.And the key blasthol... To determine the influence of key blasthole parameters on tunnel overbreak during blasting construction,an intelligent detection sys-tem for tunnel blasting construction is independently developed.And the key blasthole parameters and overbreak of a typical section of a single line tunnel under the condition of Class V surrounding rock are analyzed and detected.The actual data obtained is compared with the results of numerical simulations and theoretical calculations.The results are as follows:(1)Quantitative analysis is performed based on the blasthole angle,opening position,and charge mass by the self-developed intelligent detection equipment for blasthole parameters,which can be used to guide the drilling construction.Intelligent scanning equipment for outline excavation can be used to image the actual excavation section in real-time and has the advantages of high precision and fast speed;(2)Tunnel overbreak can be regarded as consisting of two parts:the surrounding rock damage caused by the blasting load,and the collapse of the surrounding rock caused by the blasthole opening position.Every parameter of the peripheral hole will affect the tunnel overbreak;however,the key parameter is the blasthole opening position;(3)The distributions of the tunnel overbreak volume obtained with the theoretical analysis,finite element simulation,and measurements are basically consistent.Under the condition of Class V surrounding rock,the overbreak of this single line tunnel can reach 14.1–78.2 cm.To meet the specification requirements,the opening position and construction accuracy of the peripheral hole should be strictly controlled. 展开更多
关键词 tunnel blasting Blasthole parameters tunnel overbreak Surrounding rock damage smooth surface blasting
原文传递
An empirical approach for predicting burden velocities in rock blasting 被引量:3
10
作者 Zong-Xian Zhang Li-Yuan Chi Changping Yi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第4期767-773,共7页
An analytical relation between burden velocity and ratio of burden to blasthole diameter is developed in this paper.This relation is found to be consistent with the measured burden velocities of all 37 full-scale blas... An analytical relation between burden velocity and ratio of burden to blasthole diameter is developed in this paper.This relation is found to be consistent with the measured burden velocities of all 37 full-scale blasts found from published articles.These blasts include single-hole blasts,multi-hole blasts,and simultaneously-initiated blasts with various borehole diameters such as 64 mm,76 mm,92 mm,115 mm,142 mm and 310 mm.All boreholes were fully charged.The agreement between measured and calculated burden velocities demonstrates that this relation can be used to predict the burden velocity of a wide range of full-scale blast with fully-coupled explosive charge and help to determine a correct delay time between adjacent holes or rows in various full-scale blasts involved in tunnelling(or drifting),surface and underground mining production blasts and underground opening slot blasts.In addition,this theoretical relation is found to agree with the measured burden velocities of 9 laboratory small-scale blasts to a certain extent.To predict the burden velocity of a small-scale blast,a further study or modification to the relation is necessary by using more small-scale blasts in the future. 展开更多
关键词 Burden velocity Rock blasting Kinetic energy Delay time tunnelLING Minin
下载PDF
Influence of delay interval on blasting efficiency of parallel hole cuts with an empty hole
11
作者 QiZhang DachaoLin 《Journal of University of Science and Technology Beijing》 CSCD 2003年第4期12-15,共4页
Time interval of short delay ignition is an important factor to affect theefficiency of blasting cuts. The motion process of rock pieces in the cut cavity is analyzed, amechanical model to calculate the delay time of ... Time interval of short delay ignition is an important factor to affect theefficiency of blasting cuts. The motion process of rock pieces in the cut cavity is analyzed, amechanical model to calculate the delay time of parallel hole cuts is presented for tunnel blasting,and a theoretical method to determine the volume ratio (the clearage rate) of the rock pieceswithin the cut cavity at different moments is proposed for the blasting cut with an empty hole.Numerical analysis results show that the optimal delay interval is proportional to the boreholedepth. The suggested results are of practical value to the optimal design of the delay interval inmillisecond blasting related to the parallel hole cuts with an empty hole. 展开更多
关键词 tunnel blasting millisecond blasting parallel hole cuts rock fragmentation
下载PDF
Numerical investigation of effect of eccentric decoupled charge structure on blasting-induced rock damage 被引量:12
12
作者 PAN Cheng XIE Li-xiang +3 位作者 LI Xing LIU Kai GAO Peng-fei TIAN Long-gang 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期663-679,共17页
Eccentric decoupling blasting is commonly used in underground excavation.Determination of perimeter hole parameters(such as the blasthole diameter,spacing,and burden)based on an eccentric charge structure is vital for... Eccentric decoupling blasting is commonly used in underground excavation.Determination of perimeter hole parameters(such as the blasthole diameter,spacing,and burden)based on an eccentric charge structure is vital for achieving an excellent smooth blasting effect.In this paper,the Riedel-Hiermaier-Thoma(RHT)model was employed to study rock mass damage under smooth blasting.Firstly,the parameters of the RHT model were calibrated by using the existing SHPB experiment,which were then verified by the existing blasting experiment results.Secondly,the influence of different charge structures on the blasting effect was investigated using the RHT model.The simulation results indicated that eccentric charge blasting has an obvious pressure eccentricity effect.Finally,to improve the blasting effect,the smooth blasting parameters were optimized based on an eccentric charge structure.The overbreak and underbreak phenomena were effectively controlled,and a good blasting effect was achieved with the optimized blasting parameters. 展开更多
关键词 eccentric charge structure smooth blasting rock mass damage RHT model parameter optimization
下载PDF
周边孔聚能装置间隔装药在光面爆破中的应用研究 被引量:1
13
作者 王清标 王涛 +5 位作者 田成林 孙永 魏祥 李中辉 王旭 李悦 《爆破》 CSCD 北大核心 2024年第1期77-84,共8页
隧道光面爆破工程的周边孔需要采用间隔装药方式,而大部分间隔装药方式采用“导爆索+雷管”联合起爆技术,此技术具有一定的局限性且经常发生拒爆现象。如何在保证隧道掘进效率的前提下提高光面爆破效果成为目前亟待解决的难题,从现场试... 隧道光面爆破工程的周边孔需要采用间隔装药方式,而大部分间隔装药方式采用“导爆索+雷管”联合起爆技术,此技术具有一定的局限性且经常发生拒爆现象。如何在保证隧道掘进效率的前提下提高光面爆破效果成为目前亟待解决的难题,从现场试验方面开展相关研究,提出“聚能装置+数码电子雷管”新型联合起爆技术,将其应用于高原某隧道,通过与原始的“导爆索+数码电子雷管”联合起爆技术的爆破后效果进行对比分析。实验结果表明:对比原始技术,新技术炸药单耗降低了0.2 kg/m^(3),半孔留痕率提高了5%,平均装药时间由原来的1.3 h降为1.0 h,稳定循环进尺的同时极大降低了耗材费用,提高了隧道光面爆破效果。 展开更多
关键词 隧道开挖 光面爆破 间隔装药 联合起爆技术 聚能装置
下载PDF
爆破扰动高应力巷道围岩力学响应特征研究
14
作者 常聚才 齐潮 +4 位作者 殷志强 史文豹 吴博文 王拓 高翔 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第6期1-13,共13页
为研究深井厚硬顶板采场巷道围岩在高静载和强动载耦合作用下的力学响应,基于相似模拟试验分析原岩应力、采动应力及爆破扰动三阶段的巷道围岩应力场与位移场,结合光纤环向应变场研究巷道围岩破坏特征,探索爆破扰动应力波在不同煤岩体... 为研究深井厚硬顶板采场巷道围岩在高静载和强动载耦合作用下的力学响应,基于相似模拟试验分析原岩应力、采动应力及爆破扰动三阶段的巷道围岩应力场与位移场,结合光纤环向应变场研究巷道围岩破坏特征,探索爆破扰动应力波在不同煤岩体中的传播规律及巷道动力响应机制。研究结果表明:巷道开挖后顶底板卸压明显,两帮产生应力集中区,采动应力阶段应力集中区范围增加50%,爆破后顶板围岩沿垮落角大范围卸压,应力沿巷道左肩窝逆时针逐渐增大;浅部巷道围岩呈现向自由面膨胀–变形,受巷道肩窝处剪切滑移错动影响,锚杆、锚索支护场产生相反的位移量,应力波扰动后,巷道左帮产生拉伸裂纹并与锚杆支护场连成宏观裂纹,裂纹发育高度大于锚杆支护场高度;巷道围岩顶底板呈现明显的张拉破坏特征,左右肩角呈现张拉及剪切复合破坏形式;应力波由小阻抗介质进入大阻抗介质的衰减速度最快,在同种介质中衰减速度次之,由大阻抗介质进入小阻抗介质中应力波峰值反而增大,应力波峰值强度衰减后仍大于巷道顶板极限抗拉强度,导致巷道围岩大变形失稳并产生一定程度的动力响应。基于应力波连续穿过层状岩体理论模型,结合动静载叠加理论,可优化爆破参数从而实现减冲抗冲主被动联合支护。 展开更多
关键词 高静载 强动载 巷道围岩 爆破扰动 高应力
下载PDF
小净距隧道掘进爆破及其振动响应规律研究
15
作者 李小帅 高文学 +3 位作者 宿利平 张小军 胡宇 薛睿 《爆破》 CSCD 北大核心 2024年第2期194-202,共9页
为了研究爆破荷载作用下小净距隧道中夹岩区的动力稳定性问题,依托小龙门隧道爆破工程,开展了现场爆破振动监测试验。通过改进的变分模态分解(variational mode decomposition,VMD)与多尺度排列熵(multi-scale permutation entropy,MPE... 为了研究爆破荷载作用下小净距隧道中夹岩区的动力稳定性问题,依托小龙门隧道爆破工程,开展了现场爆破振动监测试验。通过改进的变分模态分解(variational mode decomposition,VMD)与多尺度排列熵(multi-scale permutation entropy,MPE)算法对爆破振动信号进行消噪处理,基于此分析了掏槽孔与周边孔爆破在后行洞左拱腰(非中夹岩区)、右拱腰(中夹岩区)中产生的振动特征差异。结果表明:采用改进的自适应VMD-MPE算法可以有效消除振动信号中的噪声,并降低了主观决策的影响;此外,相对于非中夹岩区,中夹岩对爆破振动具有明显的放大效应,其质点峰值振速明显大于非中夹岩区,但中夹岩区的振动衰减速度更快;同时,通过对比非中夹岩区与中夹岩区各测点振动频率特征可以发现,中夹岩区小于40 Hz的低频振动能量占比较大,更易引起支护结构的共振,发生损伤与破坏的风险更高,应重点关注;受“转角削弱”作用以及地震波传播路径的影响,在比例距离SD小于等于11.57 m·kg^(1/3)范围内,周边孔爆破在掌子面后方围岩中产生的振速大于掏槽孔。 展开更多
关键词 中夹岩 小净距隧道 爆破振动效应 变分模态分解 多尺度排列熵
下载PDF
小净距隧道先行洞爆破开挖对后行洞围岩稳定性影响研究 被引量:4
16
作者 李旭哲 李文杰 +1 位作者 毕志刚 梁斌 《振动与冲击》 EI CSCD 北大核心 2024年第7期42-49,83,共9页
为研究小净距隧道先行洞爆破开挖对后行洞围岩稳定性的影响,以浙江义东高速防军隧道项目为工程背景,根据能量衰减规律推导出爆破施工中围岩振速计算公式,采用有限元软件MIDAS GTS NX模拟不同净距条件下围岩振速及应力的变化规律,将围岩... 为研究小净距隧道先行洞爆破开挖对后行洞围岩稳定性的影响,以浙江义东高速防军隧道项目为工程背景,根据能量衰减规律推导出爆破施工中围岩振速计算公式,采用有限元软件MIDAS GTS NX模拟不同净距条件下围岩振速及应力的变化规律,将围岩振速数值结果与理论值进行对比分析,验证了振速计算公式的准确性。根据振速与应力之间关系,提出保证隧道安全施工的振速阈值。结果表明:后行洞围岩振速大小理论值与模拟值最大相对误差为5.9%,与现场监测数据最大相对误差为7%,验证了理论公式的准确性;后行洞隧道振速峰值与先行洞隧道爆破中心距呈负相关,围岩迎爆侧面监测点振速峰值大于背爆侧,2 D为防军隧道爆破施工时最小安全净距(D为隧道净距),此时上台阶开挖最大振速峰值约为下台阶的1.2倍;爆破开挖后围岩应力峰值与振速峰值主要集中在拱腰及拱脚附近,随着净距增大,先行洞对后行洞的影响逐渐减弱,最终忽略不计;爆破作用下,围岩应力峰值和振速峰值具有一定线性关系,保证隧道爆破安全施工的振速控制阈值为1.9 cm/s,研究成果可为今后类似小净距隧道工程爆破施工提供借鉴。 展开更多
关键词 小净距隧道 隧道净距 爆破开挖 振动响应 围岩稳定性 数值模拟
下载PDF
西康高铁秦岭太兴山隧道凿岩台车钻爆试验研究 被引量:1
17
作者 冯海潮 黄智勇 +4 位作者 程宏生 陶永宝 傅洪贤 许华威 管晓明 《铁道建筑》 北大核心 2024年第2期91-93,共3页
基于凿岩台车应用现状,针对采用凿岩台车钻孔爆破时平均线性超挖量大等问题,选取西康高速铁路(西安—安康)秦岭太兴山隧道左洞进口Ⅲ级围岩段(DK23+075—DK23+155)作为凿岩台车钻爆法试验段。首先针对周边孔外插角大和掏槽孔深度受限情... 基于凿岩台车应用现状,针对采用凿岩台车钻孔爆破时平均线性超挖量大等问题,选取西康高速铁路(西安—安康)秦岭太兴山隧道左洞进口Ⅲ级围岩段(DK23+075—DK23+155)作为凿岩台车钻爆法试验段。首先针对周边孔外插角大和掏槽孔深度受限情况,将凿岩台车两侧机械臂长度由7.1 m缩短至6.1 m。然后制定了精准钻孔措施。基于与该隧道同等围岩级别地段手风钻钻孔爆破施工经验,经过现场3个循环的凿岩台车钻爆试验,确定掏槽形式为两级斜孔掏槽,把电子雷管起爆时间设置为导爆管雷管奇数段位的起爆时间,按照掏槽孔、辅助孔、内圈孔、周边孔和底板孔的顺序依次起爆。经实施,爆破施工进尺可达3.4~3.6 m,周边孔爆破后炮痕保留率90%以上,断面平均线性超挖量仅19.9 cm。与凿岩台车配套的药卷直径宜在40~45 mm取值。 展开更多
关键词 铁路隧道 钻爆法 试验研究 凿岩台车 精准钻孔 爆破参数 超欠挖控制 钻爆工效
下载PDF
C型开口聚能管爆破机理与隧道光爆优化效果研究
18
作者 朱凯 张学民 +4 位作者 龙立敦 武朝光 周贤舜 万正 伍福寿 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第10期3849-3863,共15页
超欠挖是钻爆法隧道施工的常见问题,与光面爆破效果密切相关。为有效解决隧道掘进超欠挖及常规聚能管不利于光爆层岩体破碎的问题,以优化调节爆轰能量为思路,采用理论分析和数值模拟方法研究C型开口聚能管的裂岩机理。研究结果表明采用... 超欠挖是钻爆法隧道施工的常见问题,与光面爆破效果密切相关。为有效解决隧道掘进超欠挖及常规聚能管不利于光爆层岩体破碎的问题,以优化调节爆轰能量为思路,采用理论分析和数值模拟方法研究C型开口聚能管的裂岩机理。研究结果表明采用C型开口聚能管与采用常规聚能管和常规药包的光面爆破相比具有以下显著优势:1)聚能管开口能显著提高光爆层岩体应力,使光爆层岩体率先损伤,引导岩体充分破碎;2)开口的存在间接增大了聚能方向上的拉应力,裂纹沿聚能方向定向扩展,超欠挖控制效果良好;3)与常规聚能管相比,非聚能方向的岩体应力降低更多,裂纹拓展更少,这更易于保护开挖轮廓线外侧围岩;4)C型开口聚能管可提高周边孔孔距和光爆层厚度,有利于提高光面爆破的效果;C型开口聚能管与常规爆破相比,超挖量降低83%,欠挖量降低68%,半孔率更高且开挖轮廓更平整,并可在一定程度上降低钻孔量和炸药单耗。总体上,C型开口聚能管的应用有利于提高隧道钻爆法施工的效率和质量。 展开更多
关键词 钻爆法隧道 超欠挖优化 聚能爆破 C型开口聚能管 光面爆破
下载PDF
爆破作用下层状围岩隧道突变失稳判据研究
19
作者 彭亚雄 周子霈 +2 位作者 姚颖康 刘运思 左清军 《中国安全科学学报》 CAS CSCD 北大核心 2024年第1期171-178,共8页
为判断爆破振动与损伤作用下层状岩体隧道的围岩稳定性,根据层状围岩失稳特征建立隧道力学模型,考虑爆破损伤和振动效应,构建层状围岩隧道系统总势能方程和突变失稳判据,分析爆破作用下层状围岩稳定性演化规律;并以沪昆高铁湖南段姚家... 为判断爆破振动与损伤作用下层状岩体隧道的围岩稳定性,根据层状围岩失稳特征建立隧道力学模型,考虑爆破损伤和振动效应,构建层状围岩隧道系统总势能方程和突变失稳判据,分析爆破作用下层状围岩稳定性演化规律;并以沪昆高铁湖南段姚家隧道为工程背景,分析层状围岩隧道稳定性。结果表明:层状围岩隧道发生突变失稳的充要条件是满足分岔集方程,即当突变特征值Δ≤0时系统可能发生突变失稳;爆破累积效应造成围岩刚度不断降低,爆破药量增加提高爆破振动效应,这些均导致层状围岩失稳概率增加;实际隧道失稳评价结果与施工现场情况、监测结果一致,验证了失稳判据的有效性。 展开更多
关键词 爆破作用 层状围岩隧道 失稳判据 突变理论 稳定性
下载PDF
硬岩引水隧洞掘进爆破参数研究
20
作者 张北旗 贾虎 +1 位作者 汪海波 吕闹 《佳木斯大学学报(自然科学版)》 CAS 2024年第4期114-118,共5页
为探究不同岩性时引水隧洞爆破合理的延迟时间和最小抵抗线,以瓯江引水工程三标段隧洞爆破工程为背景,依据理论公式分析了隧洞爆破的合理延时;通过ANSYS数值模拟软件建立不同最小抵抗线的计算模型,对不同工况下岩体内有效应力、裂纹扩... 为探究不同岩性时引水隧洞爆破合理的延迟时间和最小抵抗线,以瓯江引水工程三标段隧洞爆破工程为背景,依据理论公式分析了隧洞爆破的合理延时;通过ANSYS数值模拟软件建立不同最小抵抗线的计算模型,对不同工况下岩体内有效应力、裂纹扩展情况进行对比分析。结果表明,对于花岗岩和凝灰岩,随着最小抵抗线增大,对应的延时也增大,有效应力作用呈衰减态势,裂纹扩展逐渐分散;根据优化结果以3m的炮孔深度为例,花岗岩和凝灰岩下掏槽孔与辅助孔、崩落孔间、崩落孔与周边孔的延时分别取80ms,50ms,30ms和90ms,50ms,40ms,最小抵抗线为600mm~650mm,经现场试验表明爆落岩石块度均匀、易于装运,断面轮廓成型规整,炮孔利用率达到91%,光爆效果良好、与研究结果吻合。 展开更多
关键词 硬岩隧洞 延迟时间 最小抵抗线 光面爆破 数值模拟
下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部