Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to app...Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to appraise the practicability of weakening shock waves and, hence, reducing the wave drag in transonic flight regime using a two-dimensional jagged wall and thereby to gain an appropriate jagged wall shape for future empirical study. Different shapes of the jagged wall, including rectangular, circular, and triangular shapes, were employed. The numerical method was validated by experimental and numerical studies involving transonic flow over the NACA0012 airfoil, and the results presented here closely match previous experimental and numerical results. The impact of parameters, including shape and the length-to-spacing ratio of a jagged wall, was studied on aerodynamic forces and flow field. The results revealed that applying a jagged wall method on the upper surface of an airfoil changes the shock structure significantly and disintegrates it, which in turn leads to a decrease in wave drag. It was also found that the maximum drag coefficient decrease of around 17 % occurs with a triangular shape, while the maximum increase in aerodynamic efficiency(lift-to-drag ratio)of around 10 % happens with a rectangular shape at an angle of attack of 2.26?.展开更多
Ablation excited by current pulses is a very critical physical process in pulse plasma thrusters(PPT).Its effects on wall-plasma interaction directly determine the PPT performances.In order to reveal the process of th...Ablation excited by current pulses is a very critical physical process in pulse plasma thrusters(PPT).Its effects on wall-plasma interaction directly determine the PPT performances.In order to reveal the process of the ablated wall interaction with the discharge plasma in PPT,ablation models formulated by three different boundary conditions at the wall-plasma interface are studied.These are the two widely used high-speed evaporation models(Model-L and Model-M),and the recently developed Keida-Zaghloul model(Model-K)of the Knudsen layer that takes into account the internal degrees of freedom on the energy flux conservation.First,fundamental mechanisms of the three ablation models are clarified by comparative analysis in order to gain a comprehensive understanding of the wall-plasma interaction.Then,the applicability of different ablation models with the numerical solutions of LES-6 PPT is investigated in detail using magnetohydrodynamic(MHD)modeling.Results show that Model-L and Model-M are actually special cases of Model-K when a simplified jump conditions limited by high velocity at the vapor/plasma interface is used;A ratio of ablation rate in Model-L to that in Model-M is about 0.8at the same wall surface temperature,while it rises to 1 at different surface temperature determined by Model-L and Model-M in PPT.Even though Model-K solution requires significant computational time,it shows more accurate ablation feature for the wall-plasma interaction and possesses better computing precision of impulse bit during post-pulse which is useful for future studies of the late time ablation.展开更多
The characteristics of wave forces are studied based on physical model tests with regular waves. The ratio of obliquely incident wave forces to normally incident wave forces on unit length of a vertical wall is relate...The characteristics of wave forces are studied based on physical model tests with regular waves. The ratio of obliquely incident wave forces to normally incident wave forces on unit length of a vertical wall is related with various factors. A linear reduction of the mean force of obliquely incident waves is confirmed with an increase in the relative caisson length. Also the characteristics of reflection coefficient of diagonal waves are discussed.展开更多
Previous quasi-static cyclic tests of shear walls,which routinely used an incremental lateral displacement test protocol with a constant axial load,failed to reflect the character of moment-shear force interaction of ...Previous quasi-static cyclic tests of shear walls,which routinely used an incremental lateral displacement test protocol with a constant axial load,failed to reflect the character of moment-shear force interaction of prototype buildings.To study the effect of the moment-shear force interaction on the seismic performance of shear walls,three identical 2-story shear wall specimens with different loading patterns were constructed at 1/2 scale,to represent the lower portion of an 11-story high-rise building,and were tested under reversed cyclic loads.The axial force,shear force and bending moment were simultaneously applied to simulate the effects of gravity loads and earthquake excitations on the prototype.The axial force and bending moment delivered from the upper structure were applied to the top of the specimens by two vertical actuators,and the shear force was applied to the specimens by two horizontal actuators.A mixed force-displacement control test program was adopted to ensure that the bending moment and the lateral shear were increased proportionally.The experimental results show that the moment-shear force interaction had a significant effect on the failure pattern,hysteretic characteristics,ductility and energy dissipation of the specimens.It is recommended that moment-shear force interaction should be considered in the loading condition of RC shear wall substructures cyclic tests.展开更多
Gateway supporting in long wall mining has been a problem that restricts the mine production and safety, the paper sets up an interaction model between support and surrounding rock (rock mass structure) and probes the...Gateway supporting in long wall mining has been a problem that restricts the mine production and safety, the paper sets up an interaction model between support and surrounding rock (rock mass structure) and probes the elementary theory about ground pressure behaviors of gateway. Based on the analysis of supporting theories, some new viewpoints about gateways supporting and ground pressure controlling are put forward.展开更多
Electron-wall interaction is always recognized as an important physical problem because of its remarkable influences on thruster discharge and performance. Based on existing theories, an electrode is predicted to weak...Electron-wall interaction is always recognized as an important physical problem because of its remarkable influences on thruster discharge and performance. Based on existing theories, an electrode is predicted to weaken electron-wall interaction due to its low secondary electron emission characteristic. In this paper, the electron-wall interaction in an Aton-type Hall thruster with low-emissive electrodes placed near the exit of discharge channel is studied by a fully kinetic particle-in cell method. The results show that the electron-wall interaction in the region of segmented electrode is indeed weakened, but it is significantly enhanced in the remaining region of discharge channel. It is mainly caused by electrode conductive property which makes equipotential lines convex toward channel exit and even parallel to wall surface in near-wall re- gion; this convex equipotential configuration results in significant physical effects such as repelling electrons, which causes the electrons to move toward the channel center, and the electrons emitted from electrodes to be remarkably accelerated, thereby increasing electron temperature in the discharge channel, etc. Furthermore, the results also indicate that the discharge current in the segmented electrode case is larger than in the non-segmented electrode case, which is qualitatively in accordance with previous experimental results.展开更多
An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done i...An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80 mm in inner diameter, 10 mm in wall thickness and 5 360 mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients α and β are quantitatively determined.展开更多
The amplitude and frequency modulation of near-wall flow structures by the large-scale motions in outer regions is studied in turbulent channel flows. The proper orthogonal decomposition(POD) method is applied to inve...The amplitude and frequency modulation of near-wall flow structures by the large-scale motions in outer regions is studied in turbulent channel flows. The proper orthogonal decomposition(POD) method is applied to investigate the interactions between the near-wall motions and the large-scale flow modes of the outer regions based on two datasets from direct numerical simulation of turbulent channel flows at Reynolds numbers of 550–10 0 0. The fluctuations in the fields u+, v+, w+ and Reynolds shear stress-(uv)+ are studied to understand the mechanism of amplitude and frequency modulation of the nearwall structures by the outer large-scale motions. The amplitude modulation coefficient of the Reynolds shear stress is larger than that of the velocity components. The frequency modulation effect has an opposite influence in the spanwise direction compared to the streamwise direction. The streamwise characteristic frequency increases with increasing large-scale velocity. However, the spanwise characteristic frequency exhibits a decreasing trend with increasing large-scale velocity in the near-wall region.展开更多
This work focuses on the preferable orientation analysis of the hybrid system where the C60 molecules are encap- sulated inside the boron nitride nanotubes by using the two-molecule model. The low-energy state can be ...This work focuses on the preferable orientation analysis of the hybrid system where the C60 molecules are encap- sulated inside the boron nitride nanotubes by using the two-molecule model. The low-energy state can be acquired in the contour map, which provides the visual information of the systematical van der Waals interaction potential for the C60 molecules adopting different orientations. Our results show that the C60 molecules exhibit the pre- ferred pentagon and hexagon orientations with the tube's diameter smaller and larger than 13.55A, respectively. The preferred two-bond orientation obtained in the single-molecule model is absent in this study, indicating that the intermolecular interaction of adjacent C60 molecules plays an important role in the orientational behaviors of this peapod structure.展开更多
This work studies the angle dependence of the interactions between impinging CH2 particles of 150 eV with the tungsten surface. The simulations show that the carbon atoms are much more easily bonded to the tungsten at...This work studies the angle dependence of the interactions between impinging CH2 particles of 150 eV with the tungsten surface. The simulations show that the carbon atoms are much more easily bonded to the tungsten atoms than hydrogen atoms, though a few of the latter can also penetrate into the tungsten material. When the incidence angle is greater than 75%, the incident CH2 particles are reflected without break-ups. Below this angle, a W-C layer of about 0.5 nm is formed with another C, H-rich layer depositing on top of it. The molecular dynamics (MD) approach has proved to be a powerful tool to solve the structural problems at atomic length scale of various materials. Some of its possible applications to the railway track materials have also been discussed.展开更多
Three-dimensional(3D)printing and bioprinting have come into view for a plannable and standardizable generation of implantable tissue-engineered constructs that can substitute native tissues and organs.These tissue-en...Three-dimensional(3D)printing and bioprinting have come into view for a plannable and standardizable generation of implantable tissue-engineered constructs that can substitute native tissues and organs.These tissue-engineered structures are intended to integrate with the patient’s body.Vascular tissue engineering(TE)is relevant in TE because it supports the sustained oxygenization and nutrition of all tissue-engineered constructs.Bioinks have a specific role,representingthenecessarymedium for printability and vascular cell growth.This review aims to understand the requirements for the design of vascular bioinks.First,an in-depth analysis of vascular cell interaction with their native environment must be gained.A physiological bioink suitable for a tissue-engineered vascular graft(TEVG)must not only ensure good printability but also induce cells to behave like in a native vascular vessel,including self-regenerative and growth functions.This review describes the general structure of vascular walls with wall-specific cell and extracellular matrix(ECM)components and biomechanical properties and functions.Furthermore,the physiological role of vascular ECM components for their interaction with vascular cells and the mode of interaction is introduced.Diverse currently available or imaginable bioinks are described from physiological matrix proteins to nonphysiologically occurring but natural chemical compounds useful for vascular bioprinting.The physiological performance of these bioinks is evaluated with regard to biomechanical properties postprinting,with a view to current animal studies of 3D printed vascular structures.Finally,the main challenges for further bioink development,suitable bioink components to create a self-assembly bioink concept,and future bioprinting strategies are outlined.These concepts are discussed in terms of their suitability to be part of a TEVG with a high potential for later clinical use.展开更多
The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic fra...The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.展开更多
In this paper,we investigate the impact of coronary artery dynamics on the wall shear stress(WSS)vector field topology by comparing fluid–structure interaction(FSI)and computational fluid dynamics(CFD)techniques.As o...In this paper,we investigate the impact of coronary artery dynamics on the wall shear stress(WSS)vector field topology by comparing fluid–structure interaction(FSI)and computational fluid dynamics(CFD)techniques.As one of the most common causes of death globally,coronary artery disease(CAD)is a significant economic burden;however,novel approaches are still needed to improve our ability to predict its progression.FSI can include the unique dynamical factors present in the coronary vasculature.To investigate the impact of these dynamical factors,we study an idealized artery model with sequential stenosis.The transient simulations made use of the hyperelastic artery and lipid constitutive equations,non‐Newtonian blood viscosity,and the characteristic out‐of‐phase pressure and velocity distribution of the left anterior descending coronary artery.We compare changes to established metrics of time‐averaged WSS(TAWSS)and the oscillatory shear index(OSI)to changes in the emerging WSS divergence,calculated here in a modified version to handle the deforming mesh of FSI simulations.Results suggest that the motion of the artery can impact downstream patterns in both divergence and OSI.WSS magnitude is also decreased by up to 57%due to motion in some regions.WSS divergence patterns varied most significantly between simulations over the systolic period,the time of the largest displacements.This investigation highlights that coronary dynamics could impact markers of potential CAD progression and warrants further detailed investigations in more diverse geometries and patient cases.展开更多
This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient...This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient construction practices. The paper explores two fundamental approaches to sheet pile design: limit equilibrium methods and numerical techniques, with a particular focus on finite element analysis. Utilizing the robust PLAXIS 2016 calculation code based on the finite element method and employing a simplified elastoplastic model (Mohr-Coulomb), this study meticulously models the interaction between sheet pile walls and surrounding soil. The research offers valuable insights into settlement and deformation patterns that adjacent buildings may experience during various construction phases. The central objective of this paper is to present the study’s findings and recommend potential mitigation measures for settlement effects on nearby structures. By unraveling the intricate interplay between sheet pile wall construction and neighboring buildings, the paper equips engineers and practitioners to make informed decisions that ensure the safety and integrity of the built environment. In the context of the Cotonou East Corniche development, the study addresses the limitations of existing software, such as RIDO, in predicting settlements and deformations affecting nearby buildings due to the substantial load supported by sheet pile walls. This information gap necessitates a comprehensive study to assess potential impacts on adjacent structures and propose suitable mitigation measures. The research underscores the intricate dynamics between sheet pile wall construction and its influence on the local environment. It emphasizes the critical importance of proactive engineering and vigilant monitoring in managing and mitigating potential hazards to nearby buildings. To mitigate these risks, the paper recommends measures such as deep foundations, ground improvement techniques, and retrofitting. The findings presented in this study contribute significantly to the field of civil engineering and offer invaluable insights into the multifaceted dynamics of construction-induced settlement. The study underscores the importance of continuous evaluation and coordination between construction teams and building owners to effectively manage the impacts of sheet pile wall construction on adjacent structures.展开更多
In this paper, reflection and transmission coefficients of regular waves from/through perforated thin walls are investigated. Small scale laboratory tests have been performed in a wave flume firstly with single perfor...In this paper, reflection and transmission coefficients of regular waves from/through perforated thin walls are investigated. Small scale laboratory tests have been performed in a wave flume firstly with single perforated thin Plexiglas plates of various porosities. The plate is placed perpendicular to the flume with the height from the flume bottom to the position above water surface. With this thin wall in the flume wave overtopping is prohibited and incident waves are able to transmit. The porosities of the walls are achieved by perforating the plates with circular holes. Model settings with double perforated walls parallel to each other forming so called chamber system, have been also examined. Several parameters have been used for correlating the laboratory tests’ results. Experimental data are also compared with results from the numerical model by applying the multi-domain boundary element method (MDBEM) with linear wave theory. Wave energy dissipation due to the perforations of the thin wall has been represented by a simple yet effective porosity parameter in the model. The numerical model with the MDBEM has been further validated against the previously published data.展开更多
This study experimentally and numerically investigated the effect of pulsatile flow of different frequencies and outflow resistance on wall deformation in a lateral aneurysm.A method for constructing a flexible aneury...This study experimentally and numerically investigated the effect of pulsatile flow of different frequencies and outflow resistance on wall deformation in a lateral aneurysm.A method for constructing a flexible aneurysm model was developed,and a self-designed piston pump was used to provide the pulsatile flow conditions.A fluid-structure interaction simulation was applied for comparison with and analysis of experimental findings.The maximum wall displacement oscillation increased as the pulsation frequency and outflow resistance increased,especially at the aneurysm dome.There is an obvious circular motion of the vortex center accompanying the periodic inflow fluctuation,and the pressure at the aneurysm dome at peak flow increased as the pulsatile flow frequency and terminal flow resistance increased.These results could explain why abnormal blood flow with high frequency and high outflow resistance is one of the risk factors for aneurysm rupture.展开更多
文摘Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to appraise the practicability of weakening shock waves and, hence, reducing the wave drag in transonic flight regime using a two-dimensional jagged wall and thereby to gain an appropriate jagged wall shape for future empirical study. Different shapes of the jagged wall, including rectangular, circular, and triangular shapes, were employed. The numerical method was validated by experimental and numerical studies involving transonic flow over the NACA0012 airfoil, and the results presented here closely match previous experimental and numerical results. The impact of parameters, including shape and the length-to-spacing ratio of a jagged wall, was studied on aerodynamic forces and flow field. The results revealed that applying a jagged wall method on the upper surface of an airfoil changes the shock structure significantly and disintegrates it, which in turn leads to a decrease in wave drag. It was also found that the maximum drag coefficient decrease of around 17 % occurs with a triangular shape, while the maximum increase in aerodynamic efficiency(lift-to-drag ratio)of around 10 % happens with a rectangular shape at an angle of attack of 2.26?.
基金Project supported by Ph.D.Programs Foundation of Ministry of Education of China(20121101120004)Basic Research Foundation of Beijing Institute of Technology(20120142015)
文摘Ablation excited by current pulses is a very critical physical process in pulse plasma thrusters(PPT).Its effects on wall-plasma interaction directly determine the PPT performances.In order to reveal the process of the ablated wall interaction with the discharge plasma in PPT,ablation models formulated by three different boundary conditions at the wall-plasma interface are studied.These are the two widely used high-speed evaporation models(Model-L and Model-M),and the recently developed Keida-Zaghloul model(Model-K)of the Knudsen layer that takes into account the internal degrees of freedom on the energy flux conservation.First,fundamental mechanisms of the three ablation models are clarified by comparative analysis in order to gain a comprehensive understanding of the wall-plasma interaction.Then,the applicability of different ablation models with the numerical solutions of LES-6 PPT is investigated in detail using magnetohydrodynamic(MHD)modeling.Results show that Model-L and Model-M are actually special cases of Model-K when a simplified jump conditions limited by high velocity at the vapor/plasma interface is used;A ratio of ablation rate in Model-L to that in Model-M is about 0.8at the same wall surface temperature,while it rises to 1 at different surface temperature determined by Model-L and Model-M in PPT.Even though Model-K solution requires significant computational time,it shows more accurate ablation feature for the wall-plasma interaction and possesses better computing precision of impulse bit during post-pulse which is useful for future studies of the late time ablation.
基金This paper presents one portion ofthe achievement in the China National Key Project"Construction Techniqties for Breakwaters in Deep Water"(96-415-02-03)
文摘The characteristics of wave forces are studied based on physical model tests with regular waves. The ratio of obliquely incident wave forces to normally incident wave forces on unit length of a vertical wall is related with various factors. A linear reduction of the mean force of obliquely incident waves is confirmed with an increase in the relative caisson length. Also the characteristics of reflection coefficient of diagonal waves are discussed.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2019B05the Heilongjiang Provincial Natural Science Foundation of China under Grant No.LH2019E098,the National Natural Science Foundation of China under Grant Nos.51878631 and 51678544the National Key Research and Development Program of China under Grant Nos.2017YFC1500605 and 2018YFC1504602-01。
文摘Previous quasi-static cyclic tests of shear walls,which routinely used an incremental lateral displacement test protocol with a constant axial load,failed to reflect the character of moment-shear force interaction of prototype buildings.To study the effect of the moment-shear force interaction on the seismic performance of shear walls,three identical 2-story shear wall specimens with different loading patterns were constructed at 1/2 scale,to represent the lower portion of an 11-story high-rise building,and were tested under reversed cyclic loads.The axial force,shear force and bending moment were simultaneously applied to simulate the effects of gravity loads and earthquake excitations on the prototype.The axial force and bending moment delivered from the upper structure were applied to the top of the specimens by two vertical actuators,and the shear force was applied to the specimens by two horizontal actuators.A mixed force-displacement control test program was adopted to ensure that the bending moment and the lateral shear were increased proportionally.The experimental results show that the moment-shear force interaction had a significant effect on the failure pattern,hysteretic characteristics,ductility and energy dissipation of the specimens.It is recommended that moment-shear force interaction should be considered in the loading condition of RC shear wall substructures cyclic tests.
文摘Gateway supporting in long wall mining has been a problem that restricts the mine production and safety, the paper sets up an interaction model between support and surrounding rock (rock mass structure) and probes the elementary theory about ground pressure behaviors of gateway. Based on the analysis of supporting theories, some new viewpoints about gateways supporting and ground pressure controlling are put forward.
基金supported by the Fundamental Research Funds for the Central Universities,China(Grant No.0903005203189)the National Natural Science Foundation of China(Grant Nos.11005025,10975026,and 11275034)+1 种基金the Scientific Research Innovation Foundation of Harbin Institution of Technology,China(GrantNo.HITNSRIF2009044)the Key Project of the Scientific Technology Program of Liaoning Province,China(Grant No.2011224007)
文摘Electron-wall interaction is always recognized as an important physical problem because of its remarkable influences on thruster discharge and performance. Based on existing theories, an electrode is predicted to weaken electron-wall interaction due to its low secondary electron emission characteristic. In this paper, the electron-wall interaction in an Aton-type Hall thruster with low-emissive electrodes placed near the exit of discharge channel is studied by a fully kinetic particle-in cell method. The results show that the electron-wall interaction in the region of segmented electrode is indeed weakened, but it is significantly enhanced in the remaining region of discharge channel. It is mainly caused by electrode conductive property which makes equipotential lines convex toward channel exit and even parallel to wall surface in near-wall re- gion; this convex equipotential configuration results in significant physical effects such as repelling electrons, which causes the electrons to move toward the channel center, and the electrons emitted from electrodes to be remarkably accelerated, thereby increasing electron temperature in the discharge channel, etc. Furthermore, the results also indicate that the discharge current in the segmented electrode case is larger than in the non-segmented electrode case, which is qualitatively in accordance with previous experimental results.
文摘An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80 mm in inner diameter, 10 mm in wall thickness and 5 360 mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients α and β are quantitatively determined.
基金supported by the National Natural Science Foundation of China, Basic Science Center Program for “Multiscale Problems in Nonlinear Mechanics” (Grant No. 11988102)the National Natural Science Foundation of China (Grant Nos. 91852204, 11702302)the National Key R&D Program of China (Grant No. 2020YFA0405700)
文摘The amplitude and frequency modulation of near-wall flow structures by the large-scale motions in outer regions is studied in turbulent channel flows. The proper orthogonal decomposition(POD) method is applied to investigate the interactions between the near-wall motions and the large-scale flow modes of the outer regions based on two datasets from direct numerical simulation of turbulent channel flows at Reynolds numbers of 550–10 0 0. The fluctuations in the fields u+, v+, w+ and Reynolds shear stress-(uv)+ are studied to understand the mechanism of amplitude and frequency modulation of the nearwall structures by the outer large-scale motions. The amplitude modulation coefficient of the Reynolds shear stress is larger than that of the velocity components. The frequency modulation effect has an opposite influence in the spanwise direction compared to the streamwise direction. The streamwise characteristic frequency increases with increasing large-scale velocity. However, the spanwise characteristic frequency exhibits a decreasing trend with increasing large-scale velocity in the near-wall region.
基金Supported by the National Basic Research Program of China under Grant No 2011CB808200the National Natural Science Foundation of China under Grant Nos 11504150,11304020 and 51320105007the Cheung Kong Scholars Programme of China
文摘This work focuses on the preferable orientation analysis of the hybrid system where the C60 molecules are encap- sulated inside the boron nitride nanotubes by using the two-molecule model. The low-energy state can be acquired in the contour map, which provides the visual information of the systematical van der Waals interaction potential for the C60 molecules adopting different orientations. Our results show that the C60 molecules exhibit the pre- ferred pentagon and hexagon orientations with the tube's diameter smaller and larger than 13.55A, respectively. The preferred two-bond orientation obtained in the single-molecule model is absent in this study, indicating that the intermolecular interaction of adjacent C60 molecules plays an important role in the orientational behaviors of this peapod structure.
基金financially supported by the Science Foundation for International Cooperation of Sichuan Province (2014HH0016)the Fundamental Research Funds for the Central Universities (SWJTU2014: A0920502051113-10000)National Magnetic Confinement Fusion Science Program (2011GB112001)
文摘This work studies the angle dependence of the interactions between impinging CH2 particles of 150 eV with the tungsten surface. The simulations show that the carbon atoms are much more easily bonded to the tungsten atoms than hydrogen atoms, though a few of the latter can also penetrate into the tungsten material. When the incidence angle is greater than 75%, the incident CH2 particles are reflected without break-ups. Below this angle, a W-C layer of about 0.5 nm is formed with another C, H-rich layer depositing on top of it. The molecular dynamics (MD) approach has proved to be a powerful tool to solve the structural problems at atomic length scale of various materials. Some of its possible applications to the railway track materials have also been discussed.
文摘Three-dimensional(3D)printing and bioprinting have come into view for a plannable and standardizable generation of implantable tissue-engineered constructs that can substitute native tissues and organs.These tissue-engineered structures are intended to integrate with the patient’s body.Vascular tissue engineering(TE)is relevant in TE because it supports the sustained oxygenization and nutrition of all tissue-engineered constructs.Bioinks have a specific role,representingthenecessarymedium for printability and vascular cell growth.This review aims to understand the requirements for the design of vascular bioinks.First,an in-depth analysis of vascular cell interaction with their native environment must be gained.A physiological bioink suitable for a tissue-engineered vascular graft(TEVG)must not only ensure good printability but also induce cells to behave like in a native vascular vessel,including self-regenerative and growth functions.This review describes the general structure of vascular walls with wall-specific cell and extracellular matrix(ECM)components and biomechanical properties and functions.Furthermore,the physiological role of vascular ECM components for their interaction with vascular cells and the mode of interaction is introduced.Diverse currently available or imaginable bioinks are described from physiological matrix proteins to nonphysiologically occurring but natural chemical compounds useful for vascular bioprinting.The physiological performance of these bioinks is evaluated with regard to biomechanical properties postprinting,with a view to current animal studies of 3D printed vascular structures.Finally,the main challenges for further bioink development,suitable bioink components to create a self-assembly bioink concept,and future bioprinting strategies are outlined.These concepts are discussed in terms of their suitability to be part of a TEVG with a high potential for later clinical use.
基金gratefully the China Scholarship Council for providing a PhD Scholarship(CSC No.201906690049).
文摘The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.
基金Westpac Scholars Trust,Grant/Award Number:FL19518National Heart Foundation of Australia,Grant/Award Number:FLF102056National Health and Medical Research Council(NHMRC),Grant/Award Number:CDF1161506。
文摘In this paper,we investigate the impact of coronary artery dynamics on the wall shear stress(WSS)vector field topology by comparing fluid–structure interaction(FSI)and computational fluid dynamics(CFD)techniques.As one of the most common causes of death globally,coronary artery disease(CAD)is a significant economic burden;however,novel approaches are still needed to improve our ability to predict its progression.FSI can include the unique dynamical factors present in the coronary vasculature.To investigate the impact of these dynamical factors,we study an idealized artery model with sequential stenosis.The transient simulations made use of the hyperelastic artery and lipid constitutive equations,non‐Newtonian blood viscosity,and the characteristic out‐of‐phase pressure and velocity distribution of the left anterior descending coronary artery.We compare changes to established metrics of time‐averaged WSS(TAWSS)and the oscillatory shear index(OSI)to changes in the emerging WSS divergence,calculated here in a modified version to handle the deforming mesh of FSI simulations.Results suggest that the motion of the artery can impact downstream patterns in both divergence and OSI.WSS magnitude is also decreased by up to 57%due to motion in some regions.WSS divergence patterns varied most significantly between simulations over the systolic period,the time of the largest displacements.This investigation highlights that coronary dynamics could impact markers of potential CAD progression and warrants further detailed investigations in more diverse geometries and patient cases.
文摘This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient construction practices. The paper explores two fundamental approaches to sheet pile design: limit equilibrium methods and numerical techniques, with a particular focus on finite element analysis. Utilizing the robust PLAXIS 2016 calculation code based on the finite element method and employing a simplified elastoplastic model (Mohr-Coulomb), this study meticulously models the interaction between sheet pile walls and surrounding soil. The research offers valuable insights into settlement and deformation patterns that adjacent buildings may experience during various construction phases. The central objective of this paper is to present the study’s findings and recommend potential mitigation measures for settlement effects on nearby structures. By unraveling the intricate interplay between sheet pile wall construction and neighboring buildings, the paper equips engineers and practitioners to make informed decisions that ensure the safety and integrity of the built environment. In the context of the Cotonou East Corniche development, the study addresses the limitations of existing software, such as RIDO, in predicting settlements and deformations affecting nearby buildings due to the substantial load supported by sheet pile walls. This information gap necessitates a comprehensive study to assess potential impacts on adjacent structures and propose suitable mitigation measures. The research underscores the intricate dynamics between sheet pile wall construction and its influence on the local environment. It emphasizes the critical importance of proactive engineering and vigilant monitoring in managing and mitigating potential hazards to nearby buildings. To mitigate these risks, the paper recommends measures such as deep foundations, ground improvement techniques, and retrofitting. The findings presented in this study contribute significantly to the field of civil engineering and offer invaluable insights into the multifaceted dynamics of construction-induced settlement. The study underscores the importance of continuous evaluation and coordination between construction teams and building owners to effectively manage the impacts of sheet pile wall construction on adjacent structures.
基金the Yildiz Technical University Research Fund for financially supporting this work
文摘In this paper, reflection and transmission coefficients of regular waves from/through perforated thin walls are investigated. Small scale laboratory tests have been performed in a wave flume firstly with single perforated thin Plexiglas plates of various porosities. The plate is placed perpendicular to the flume with the height from the flume bottom to the position above water surface. With this thin wall in the flume wave overtopping is prohibited and incident waves are able to transmit. The porosities of the walls are achieved by perforating the plates with circular holes. Model settings with double perforated walls parallel to each other forming so called chamber system, have been also examined. Several parameters have been used for correlating the laboratory tests’ results. Experimental data are also compared with results from the numerical model by applying the multi-domain boundary element method (MDBEM) with linear wave theory. Wave energy dissipation due to the perforations of the thin wall has been represented by a simple yet effective porosity parameter in the model. The numerical model with the MDBEM has been further validated against the previously published data.
基金This study was supported by the National Natural Science Foundation of China(Grants 11602053 and 51576033)the Fundamental Research Funds for the Central Universities(Grant DUT18JC23).
文摘This study experimentally and numerically investigated the effect of pulsatile flow of different frequencies and outflow resistance on wall deformation in a lateral aneurysm.A method for constructing a flexible aneurysm model was developed,and a self-designed piston pump was used to provide the pulsatile flow conditions.A fluid-structure interaction simulation was applied for comparison with and analysis of experimental findings.The maximum wall displacement oscillation increased as the pulsation frequency and outflow resistance increased,especially at the aneurysm dome.There is an obvious circular motion of the vortex center accompanying the periodic inflow fluctuation,and the pressure at the aneurysm dome at peak flow increased as the pulsatile flow frequency and terminal flow resistance increased.These results could explain why abnormal blood flow with high frequency and high outflow resistance is one of the risk factors for aneurysm rupture.