The spin transport properties of S–Au–S junction and Au–Au–Au junction between Au nanowires are investigated with density functional theory and the non-equilibrium Green's function. We mainly focus on the spin re...The spin transport properties of S–Au–S junction and Au–Au–Au junction between Au nanowires are investigated with density functional theory and the non-equilibrium Green's function. We mainly focus on the spin resonance transport properties of the center Au atom. The breaking of chemical bonds between anchor atoms and center Au atom significantly influences their spin transmission characteristics. We find the 0.8 eV orbital energy shift between anchor S atoms and the center Au atom can well protect the spin state stored in the S–Au–S junction and efficiently extract its spin state to the current by spin resonance mechanism, while the spin interaction of itinerant electrons and the valence electron of the center Au atom in the Au–Au–Au junction can extract the current spin information into the center Au atom. Fermi energy drift and bias-dependent spin filtering properties of the Au–Au–Au junction may transform information between distance, bias,and electron spin. Those unique properties make them potential candidates for a logical nanocircuit.展开更多
In this work, the characteristics of the photonic crystal tunneling injection quantum dot vertical cavity surface emitting lasers(Ph C-TIQD-VCSEL) are studied through analyzing a modified modulation transfer functio...In this work, the characteristics of the photonic crystal tunneling injection quantum dot vertical cavity surface emitting lasers(Ph C-TIQD-VCSEL) are studied through analyzing a modified modulation transfer function. The function is based on the rate equations describing the carrier dynamics at different energy levels of dot and injector well. Although the frequency modulation response component associated with carrier dynamics in wetting layer(WL) and at excited state(ES) levels of dots limits the total bandwidth in conventional QD-VCSEL, our study shows that it can be compensated for by electron tunneling from the injector well into the dot in TIQD structure. Carrier back tunneling time is one of the most important parameters, and by increment of that, the bias current dependence of the total bandwidth will be insignificant. It is proved that at high bias current, the limitation of the WL-ES level plays an important role in reducing the total bandwidth and results in rollovers on 3-d B bandwidth-I curves. In such a way, for smaller air hole diameter of photonic crystal, the effect of this reduction is stronger.展开更多
In this paper, two auxiliary functions for global optimization are proposed. These two auxiliary functions possess all characters of tunnelling functions and filled functions under certain general assumptions. Thus, t...In this paper, two auxiliary functions for global optimization are proposed. These two auxiliary functions possess all characters of tunnelling functions and filled functions under certain general assumptions. Thus, they can be considered as the unification of filled function and tunnelling function. Moreover, the process of tunneling or filling for global optimization can be unified as the minimization of such auxiliary functions. Result of numerical experiments shows that such two auxiliary functions are effective.展开更多
Work function plays a significant role in surface chemistry. Local work function provides the information of local d/pole-d/pole interaction and charge distribution between adsorbates and substrate, highlighting the l...Work function plays a significant role in surface chemistry. Local work function provides the information of local d/pole-d/pole interaction and charge distribution between adsorbates and substrate, highlighting the local charge effect of the targeted spot which is normally smeared out in conventional average work function measurements. Chloroaluminum phthalocyanine (CIA1Pc), an important optoelectronic molecule with a permanent dipole moment pointing from the Pc ring to the ending CI atom, adsorbed on Au(111) in either Cl-up or Cl-down configuration. Scanning tunneling microscopy/spectroscopy measurements revealed that at the centers of Cl-up and CI-down molecules, the local work functions changed oppositely with respect to the Au(111) substrate. At their Pc lobes, however, the local work functions unanimously increased due to charging effect of the indole lobes in the CIAIPc molecule.展开更多
基金Project supported by the National Basic Research Program of China(Grants No.2011CB921602)the National Natural Science Foundation of China(Grants No.20121318158)
文摘The spin transport properties of S–Au–S junction and Au–Au–Au junction between Au nanowires are investigated with density functional theory and the non-equilibrium Green's function. We mainly focus on the spin resonance transport properties of the center Au atom. The breaking of chemical bonds between anchor atoms and center Au atom significantly influences their spin transmission characteristics. We find the 0.8 eV orbital energy shift between anchor S atoms and the center Au atom can well protect the spin state stored in the S–Au–S junction and efficiently extract its spin state to the current by spin resonance mechanism, while the spin interaction of itinerant electrons and the valence electron of the center Au atom in the Au–Au–Au junction can extract the current spin information into the center Au atom. Fermi energy drift and bias-dependent spin filtering properties of the Au–Au–Au junction may transform information between distance, bias,and electron spin. Those unique properties make them potential candidates for a logical nanocircuit.
文摘In this work, the characteristics of the photonic crystal tunneling injection quantum dot vertical cavity surface emitting lasers(Ph C-TIQD-VCSEL) are studied through analyzing a modified modulation transfer function. The function is based on the rate equations describing the carrier dynamics at different energy levels of dot and injector well. Although the frequency modulation response component associated with carrier dynamics in wetting layer(WL) and at excited state(ES) levels of dots limits the total bandwidth in conventional QD-VCSEL, our study shows that it can be compensated for by electron tunneling from the injector well into the dot in TIQD structure. Carrier back tunneling time is one of the most important parameters, and by increment of that, the bias current dependence of the total bandwidth will be insignificant. It is proved that at high bias current, the limitation of the WL-ES level plays an important role in reducing the total bandwidth and results in rollovers on 3-d B bandwidth-I curves. In such a way, for smaller air hole diameter of photonic crystal, the effect of this reduction is stronger.
基金Supported by the National Natural Science Foundation of China(No.70471012)
文摘In this paper, two auxiliary functions for global optimization are proposed. These two auxiliary functions possess all characters of tunnelling functions and filled functions under certain general assumptions. Thus, they can be considered as the unification of filled function and tunnelling function. Moreover, the process of tunneling or filling for global optimization can be unified as the minimization of such auxiliary functions. Result of numerical experiments shows that such two auxiliary functions are effective.
基金supported by National Natural Science Foundation of China(Nos. 91527303, 21333001,21373020, 61321001)MOST(Nos.2013CB933404,2014CB239302),China
文摘Work function plays a significant role in surface chemistry. Local work function provides the information of local d/pole-d/pole interaction and charge distribution between adsorbates and substrate, highlighting the local charge effect of the targeted spot which is normally smeared out in conventional average work function measurements. Chloroaluminum phthalocyanine (CIA1Pc), an important optoelectronic molecule with a permanent dipole moment pointing from the Pc ring to the ending CI atom, adsorbed on Au(111) in either Cl-up or Cl-down configuration. Scanning tunneling microscopy/spectroscopy measurements revealed that at the centers of Cl-up and CI-down molecules, the local work functions changed oppositely with respect to the Au(111) substrate. At their Pc lobes, however, the local work functions unanimously increased due to charging effect of the indole lobes in the CIAIPc molecule.