We investigate the tunneling dynamics of the Fermi gases in an optical lattice in the Bose--Einstein condensation (BEC) regime. The three critical scattering lengths and the system energies are found in different ca...We investigate the tunneling dynamics of the Fermi gases in an optical lattice in the Bose--Einstein condensation (BEC) regime. The three critical scattering lengths and the system energies are found in different cases of Josephson oscillation (JO), oscillating-phase-type self-trapping (OPTST), running-phase-type self-trapping (RPTST), and self-trapping (ST). It is found that the s-wave scattering lengths have a crucial role on the tunneling dynamics. By adjusting the scattering length in the adiabatic condition, the transition probability changes with the adiabatic periodicity and a rectangular periodic pattern emerges. The periodicity of the rectangular wave depends on the system parameters such as the periodicity of the adjustable parameter, the s-wave scattering length.展开更多
Based on the definition of the apparent horizon in a general two-dimensional dilaton gravity theory, we analyze the tunnelling phenomenon near the apparent horizon. In this theory the definition of the horizon is very...Based on the definition of the apparent horizon in a general two-dimensional dilaton gravity theory, we analyze the tunnelling phenomenon near the apparent horizon. In this theory the definition of the horizon is very different from those in higher-dimensional gravity theories. By using the Hamilton-Jacobi method, the spectrum of the radiation is obtained and the temperature of the radiation is read out from this spectrum. The temperature is proportional to the surface gravity of the apparent horizon as usual. Besides, in stationary cases we calculate the spectrum by using Parikh and Wilczek's null geodesic method and the result conforms to that obtained by using the Harnilton-Jacobi method. This is expected since the flamilton-Jacobi method applies to generic spacetimes, including stationary ones.展开更多
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA01020304)the National Natural Science Foundation of China(Grant Nos.11275156,91026005,11365020,and 11047010)
文摘We investigate the tunneling dynamics of the Fermi gases in an optical lattice in the Bose--Einstein condensation (BEC) regime. The three critical scattering lengths and the system energies are found in different cases of Josephson oscillation (JO), oscillating-phase-type self-trapping (OPTST), running-phase-type self-trapping (RPTST), and self-trapping (ST). It is found that the s-wave scattering lengths have a crucial role on the tunneling dynamics. By adjusting the scattering length in the adiabatic condition, the transition probability changes with the adiabatic periodicity and a rectangular periodic pattern emerges. The periodicity of the rectangular wave depends on the system parameters such as the periodicity of the adjustable parameter, the s-wave scattering length.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11622543 and 11235010by the Open Project Program of Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,China(No.Y5KF161CJ1)
文摘Based on the definition of the apparent horizon in a general two-dimensional dilaton gravity theory, we analyze the tunnelling phenomenon near the apparent horizon. In this theory the definition of the horizon is very different from those in higher-dimensional gravity theories. By using the Hamilton-Jacobi method, the spectrum of the radiation is obtained and the temperature of the radiation is read out from this spectrum. The temperature is proportional to the surface gravity of the apparent horizon as usual. Besides, in stationary cases we calculate the spectrum by using Parikh and Wilczek's null geodesic method and the result conforms to that obtained by using the Harnilton-Jacobi method. This is expected since the flamilton-Jacobi method applies to generic spacetimes, including stationary ones.