Grouting is a major method used to prevent water and mud inrush in tunnels and underground engineering. In this paper, the current situation of control and prevention of water and mud inrush is summarized and recent a...Grouting is a major method used to prevent water and mud inrush in tunnels and underground engineering. In this paper, the current situation of control and prevention of water and mud inrush is summarized and recent advances in relevant theories, grout/equipment, and critical techniques are introduced. The time-variant equations of grout viscosity at different volumetric ratios were obtained based on the constitutive relation of typical fast curing grouts. A large-scale dynamic grouting model testing system (4000 mm × 2000 mm × 5 mm) was developed, and the diffusions of cement and fast curing grouts in dynamic water grouting were investigated. The results reveal that the diffusions of cement grouts and fast curing grouts are U-shaped and asymmetric elliptical, respectively. A multi-parameter real-time monitoring system (ϕ = 1.5 m, h = 1.2 m) was developed for the grouting process to study the diffusion and reinforcement mechanism of grouting in water-rich faulted zone. A high early strength cream-type reinforcing/plugging grout, a high permeability nano-scale silica gel grout, and a high-expansion filling grout were proposed for the control of water hazards in weak water-rich faulted zone rocks, water inrush in karst passages, and micro-crack water inrush, respectively. Complement technologies and equipment for industrial applications were also proposed. Additionally, a novel full-life periodic dynamic water grouting with the critical grouting borehole as the core was proposed. The key techniques for the control of water inrush in water-rich faulted zone, jointed fissures and karst passages, and micro-crack water inrush were developed.展开更多
Although ultrasound measurements have been used in previous studies on carpal tunnel syndrome to visualize injury to the median nerve, whether such ultrasound data can indicate the severity of carpal tunnel syndrome r...Although ultrasound measurements have been used in previous studies on carpal tunnel syndrome to visualize injury to the median nerve, whether such ultrasound data can indicate the severity of carpal tunnel syndrome remains controversial. The cross-sectional areas of the median nerve at the tunnel inlet and outlet can show swelling and compression of the nerve at the carpal. We hypothesized that the ratio of the cross-sectional areas of the median nerve at the carpal tunnel inlet to outlet accurately reflects the severity of carpal tunnel syndrome. To test this, high-resolution ultrasound with a linear array transducer at 5–17 MHz was used to assess 77 patients with carpal tunnel syndrome. The results showed that the cut-off point for the inlet-to-outlet ratio was 1.14. Significant differences in the inlet-to-outlet ratio were found among patients with mild, moderate, and severe carpal tunnel syndrome. The cut-off point in the ratio of cross-sectional areas of the median nerve was 1.29 between mild and more severe(moderate and severe) carpal tunnel syndrome patients with 64.7% sensitivity and 72.7% specificity. The cut-off point in the ratio of cross-sectional areas of the median nerve was 1.52 between the moderate and severe carpal tunnel syndrome patients with 80.0% sensitivity and 64.7% specificity. These results suggest that the inlet-to-outlet ratio reflected the severity of carpal tunnel syndrome.展开更多
Quantum tunneling conductance of molecular junctions originates from the charge transport through theπ-orbitals(π-transport)and theσ-orbitals(σ-transport)of the molecules,but theσ-transport can not be observed du...Quantum tunneling conductance of molecular junctions originates from the charge transport through theπ-orbitals(π-transport)and theσ-orbitals(σ-transport)of the molecules,but theσ-transport can not be observed due to the more rapid decay of the tunneling conductance in theσ-system compared to that in theπ-system.Here,we demonstrate that dominantσ-transport can be observed inπ-conjugated molecular junctions at the sub-nanometer scale using the scanning tunneling microscope break junction technique(STM-BJ).We have found that the conductance of meta-connected picolinic acid,which mainly occurs byσ-transport,is∼35 times higher than that of its para-isomer,which is entirely different from what is expected fromπ-transport through these systems.Flicker noise analysis reveals that the transport through the meta-connection exhibits more through-bond transport than the para-counterpart and density functional theory(DFT)shows that theσ-system provides the dominant transport path.These results reveal that theσ-electrons,rather than theπ-electrons,can dominate charge transport through conjugated molecular junctions at the sub-nanometer scale,and this provides a new avenue toward the future miniaturization of molecular devices and materials.展开更多
文摘Grouting is a major method used to prevent water and mud inrush in tunnels and underground engineering. In this paper, the current situation of control and prevention of water and mud inrush is summarized and recent advances in relevant theories, grout/equipment, and critical techniques are introduced. The time-variant equations of grout viscosity at different volumetric ratios were obtained based on the constitutive relation of typical fast curing grouts. A large-scale dynamic grouting model testing system (4000 mm × 2000 mm × 5 mm) was developed, and the diffusions of cement and fast curing grouts in dynamic water grouting were investigated. The results reveal that the diffusions of cement grouts and fast curing grouts are U-shaped and asymmetric elliptical, respectively. A multi-parameter real-time monitoring system (ϕ = 1.5 m, h = 1.2 m) was developed for the grouting process to study the diffusion and reinforcement mechanism of grouting in water-rich faulted zone. A high early strength cream-type reinforcing/plugging grout, a high permeability nano-scale silica gel grout, and a high-expansion filling grout were proposed for the control of water hazards in weak water-rich faulted zone rocks, water inrush in karst passages, and micro-crack water inrush, respectively. Complement technologies and equipment for industrial applications were also proposed. Additionally, a novel full-life periodic dynamic water grouting with the critical grouting borehole as the core was proposed. The key techniques for the control of water inrush in water-rich faulted zone, jointed fissures and karst passages, and micro-crack water inrush were developed.
基金supported by a grant from the Shanghai Key Laboratory of Peripheral Nerve and Microsurgery in China,No.14DZ2273300the Natural Science Foundation of Shanghai in China,No.13ZR1404600a grant from the National Key Basic Research Program of China(973 Program),No.2014CB542201
文摘Although ultrasound measurements have been used in previous studies on carpal tunnel syndrome to visualize injury to the median nerve, whether such ultrasound data can indicate the severity of carpal tunnel syndrome remains controversial. The cross-sectional areas of the median nerve at the tunnel inlet and outlet can show swelling and compression of the nerve at the carpal. We hypothesized that the ratio of the cross-sectional areas of the median nerve at the carpal tunnel inlet to outlet accurately reflects the severity of carpal tunnel syndrome. To test this, high-resolution ultrasound with a linear array transducer at 5–17 MHz was used to assess 77 patients with carpal tunnel syndrome. The results showed that the cut-off point for the inlet-to-outlet ratio was 1.14. Significant differences in the inlet-to-outlet ratio were found among patients with mild, moderate, and severe carpal tunnel syndrome. The cut-off point in the ratio of cross-sectional areas of the median nerve was 1.29 between mild and more severe(moderate and severe) carpal tunnel syndrome patients with 64.7% sensitivity and 72.7% specificity. The cut-off point in the ratio of cross-sectional areas of the median nerve was 1.52 between the moderate and severe carpal tunnel syndrome patients with 80.0% sensitivity and 64.7% specificity. These results suggest that the inlet-to-outlet ratio reflected the severity of carpal tunnel syndrome.
基金supported by the National Natural Science Foundation of China(21722305,21673195,21973079,and 21703188)the National Key R&D Program of China(2017YFA0204902)the Guangdong Basic and Applied Basic Research Foundation(2020A151511106).
文摘Quantum tunneling conductance of molecular junctions originates from the charge transport through theπ-orbitals(π-transport)and theσ-orbitals(σ-transport)of the molecules,but theσ-transport can not be observed due to the more rapid decay of the tunneling conductance in theσ-system compared to that in theπ-system.Here,we demonstrate that dominantσ-transport can be observed inπ-conjugated molecular junctions at the sub-nanometer scale using the scanning tunneling microscope break junction technique(STM-BJ).We have found that the conductance of meta-connected picolinic acid,which mainly occurs byσ-transport,is∼35 times higher than that of its para-isomer,which is entirely different from what is expected fromπ-transport through these systems.Flicker noise analysis reveals that the transport through the meta-connection exhibits more through-bond transport than the para-counterpart and density functional theory(DFT)shows that theσ-system provides the dominant transport path.These results reveal that theσ-electrons,rather than theπ-electrons,can dominate charge transport through conjugated molecular junctions at the sub-nanometer scale,and this provides a new avenue toward the future miniaturization of molecular devices and materials.