This paper demonstrates an atmospheric correction method to process MODIS/Aqua (Moderate-resolution Imaging Spectroradiometer) ocean color imagery over turbid coastal waters with the aid of concurrent CALIOP (Cloud-Ae...This paper demonstrates an atmospheric correction method to process MODIS/Aqua (Moderate-resolution Imaging Spectroradiometer) ocean color imagery over turbid coastal waters with the aid of concurrent CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) aerosol data, assuming that there exists "nonturbid" water in the study area where MODIS aerosol optical properties can be retrieved accurately. Aerosol properties from CALIOP measurements were obtained and related to those from MODIS. This relationship, combined with CALIOP aerosol data, was extended to turbid water to derive MODIS aerosol properties, where atmospheric correction using MODIS data alone often fails. By combining MODIS and CALIOP data, aerosol signals were separated from the total signals at the satellite level, and water-leaving radiances in turbid waters were subsequently derived. This method was tested on several MODIS/Aqua ocean color images over South China turbid waters. Comparison with field data shows that this method was effective in reducing the errors in the retrieved water-leaving radiance values to some extent. In the Zhujiang (Pearl) River Estuary, this method did not overestimate the aerosol effects as severely, and provided far fewer negative water-leaving radiance values than the NASA (National Aeronautics and Space Administration) default methods that used MODIS data alone.展开更多
The purpose of this research is to improve the retrieval accuracy for the suspended sediment concentration(SSC) from in situ and satellite remote sensing measurements in turbid East China estuarine and coastal waters....The purpose of this research is to improve the retrieval accuracy for the suspended sediment concentration(SSC) from in situ and satellite remote sensing measurements in turbid East China estuarine and coastal waters. For this aim, three important tasks are formulated and solved: 1) an estimation of remote-sensing reflectance spectra R_(rs)(λ) after atmospheric correction; 2) an estimation of R_(rs)(λ) from the radiometric signals above the air-water surface; and 3) an estimation of SSC from R_(rs)(λ). Six different models for radiometric R_(rs)(λ) determination and 28 models for SSC versus R_(rs)(λ) are analyzed based on the field observations made in the Changjiang River estuary and its adjacent coastal area. The SSC images based on the above-mentioned analysis are generated for the area.展开更多
基金Supported by the National Basic Research Program of China (973 Program, Nos. 2009CB723905, 2006CB701300)the National High Technology Research and Development Program of China (863 Program, No. 2007AA12Z161)+3 种基金the NSFC (Nos. 40676094, 40721001, 40706060)MOST, China (No. 2007BAC23B05)Open Fund of Nanchang University (No. Z03975)the Open Fund of Ocean University of China for visiting Ph. D students.
文摘This paper demonstrates an atmospheric correction method to process MODIS/Aqua (Moderate-resolution Imaging Spectroradiometer) ocean color imagery over turbid coastal waters with the aid of concurrent CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) aerosol data, assuming that there exists "nonturbid" water in the study area where MODIS aerosol optical properties can be retrieved accurately. Aerosol properties from CALIOP measurements were obtained and related to those from MODIS. This relationship, combined with CALIOP aerosol data, was extended to turbid water to derive MODIS aerosol properties, where atmospheric correction using MODIS data alone often fails. By combining MODIS and CALIOP data, aerosol signals were separated from the total signals at the satellite level, and water-leaving radiances in turbid waters were subsequently derived. This method was tested on several MODIS/Aqua ocean color images over South China turbid waters. Comparison with field data shows that this method was effective in reducing the errors in the retrieved water-leaving radiance values to some extent. In the Zhujiang (Pearl) River Estuary, this method did not overestimate the aerosol effects as severely, and provided far fewer negative water-leaving radiance values than the NASA (National Aeronautics and Space Administration) default methods that used MODIS data alone.
基金Supported by the National Natural Science Foundation of China,NSFC(Nos.41371346,41271375)the Doctoral Fund of Ministry of Education of China(No.20120076110009)
文摘The purpose of this research is to improve the retrieval accuracy for the suspended sediment concentration(SSC) from in situ and satellite remote sensing measurements in turbid East China estuarine and coastal waters. For this aim, three important tasks are formulated and solved: 1) an estimation of remote-sensing reflectance spectra R_(rs)(λ) after atmospheric correction; 2) an estimation of R_(rs)(λ) from the radiometric signals above the air-water surface; and 3) an estimation of SSC from R_(rs)(λ). Six different models for radiometric R_(rs)(λ) determination and 28 models for SSC versus R_(rs)(λ) are analyzed based on the field observations made in the Changjiang River estuary and its adjacent coastal area. The SSC images based on the above-mentioned analysis are generated for the area.