期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Forced Compressed Air Cooling System for a 300 MW Steam Turbine in Waigaoqiao Power Plant
1
作者 Sun Shixiong Hua Hong Shanghai Waigaoqiao Thermal Power Plant 《Electricity》 1996年第4期22-24,共3页
The 300 MW steam turbine installed in Waigaoqiao Power Plant with combined HPIP cylinders of double casing structure is a product of the Shanghai Turbine Works utilizing licensed technology. It has a large heat storag... The 300 MW steam turbine installed in Waigaoqiao Power Plant with combined HPIP cylinders of double casing structure is a product of the Shanghai Turbine Works utilizing licensed technology. It has a large heat storage capacity and good thermal insulation, so the metal temperature of first stage of HP cylinder (FSMTI) may reach 400-450℃ after shut down and it takes 7-8 days to cool to 150℃ by natural cooling, Now with a forced cooling system the cooling time may be reduced to 40 hours, so that the turbine may be opened for repair work in about 5-6 days. The cooling system for #2 unit and test procedure are briefly described below. 展开更多
关键词 der Forced Compressed air Cooling system for a 300 MW Steam turbine in Waigaoqiao Power Plant ITI 认认 TEST 司卜 月卜 HP IP 一基
下载PDF
Simulation and analysis of humid air turbine cycle based on aeroderivative three-shaft gas turbine 被引量:2
2
作者 HUANG Di CHEN Jin-wei +2 位作者 ZHOU Deng-ji ZHANG Hui-sheng SU Ming 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第3期662-670,共9页
Due to the fact that the turbine outlet temperature of aeroderivative three-shaft gas turbine is low,the conventional combined cycle is not suitable for three-shaft gas turbines.However,the humid air turbine(HAT)cycle... Due to the fact that the turbine outlet temperature of aeroderivative three-shaft gas turbine is low,the conventional combined cycle is not suitable for three-shaft gas turbines.However,the humid air turbine(HAT)cycle provides a new choice for aeroderivative gas turbine because the humidification process does not require high temperature.Existing HAT cycle plants are all based on single-shaft gas turbines due to their simple structures,therefore converting aeroderivative three-shaft gas turbine into HAT cycle still lacks sufficient research.This paper proposes a HAT cycle model on a basis of an aeroderivative three-shaft gas turbine.Detailed HAT cycle modelling of saturator,gas turbine and heat exchanger are carried out based on the modular modeling method.The models are verified by simulations on the aeroderivative three-shaft gas turbine.Simulation results show that the studied gas turbine with original size and characteristics could not reach the original turbine inlet temperature because of the introduction of water.However,the efficiency still increases by 0.16%when the HAT cycle runs at the designed power of the simple cycle.Furthermore,simulations considering turbine modifications show that the efficiency could be significantly improved.The results obtained in the paper can provide reference for design and analysis of HAT cycle based on multi-shaft gas turbine especially the aeroderivative gas turbine. 展开更多
关键词 humid air turbine aeroderivative gas turbine SATURATOR SIMULATION
下载PDF
Design Research of a Novel Aftercool-Humidifier Concept for Humid Air Turbine Cycle
3
作者 ZHANG Junzheng XU Zhen 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期951-969,共19页
Humid air turbine cycle(HAT)has potential of electrical efficiencies comparable to combined cycle,with lower investment cost and NO_(x) emission.The typical heat exchanger network of HAT consists of intercooler(if the... Humid air turbine cycle(HAT)has potential of electrical efficiencies comparable to combined cycle,with lower investment cost and NO_(x) emission.The typical heat exchanger network of HAT consists of intercooler(if there is),aftercooler,recuperator,economizer and humidifier,which brings higher efficiency but makes the system more complex.To simplify HAT layout,a novel humidifier concept is proposed by integrating the aftercooler into traditional counter-current humidifier.Based on this concept,a one-dimensional model including pressure drop and exergy calculation is established to distinguish the thermodynamic and hydrodynamic characteristics,and then the structural parameters,such as the number of rows and columns,tube diameter,pitch and type for a micro HAT are identified.The results show that the aftercool-humidifier plays the same role as original aftercooler and humidifier,and can match the in-tube air,out-tube air and water stream well with lower volume.In the case of micro HAT cycle,the volume of heat and mass transfer area can be reduced by 47%compared with traditional design.The major thermal resistance occurred in the convection heat transfer process inside the tube;however,using enhanced tube cannot effectively improve the compactness of device. 展开更多
关键词 humid air turbine cycle HUMIDIFIER thermodynamic analysis one-dimensional model
原文传递
Numerical simulation of HP rotor cooling configuration using parameterized method
4
作者 周鸿儒 顾忠华 +1 位作者 韩万金 刘占生 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第2期134-138,共5页
This paper implemented cooling configuration design on certain gas turbine HP rotor using parameterized method.It is convenient for complicated gas turbine blade modeling using parameters and also benefit for the geom... This paper implemented cooling configuration design on certain gas turbine HP rotor using parameterized method.It is convenient for complicated gas turbine blade modeling using parameters and also benefit for the geometry modify in later period.Parameterized modeling is the foundation of air cooling turbine blade design method engineering application.Mesh quality can be awarded when generated complicated cooling configuration blade grids,and also the increase of calculation error can arise by many mesh blocks.Film cooling and serpentine passage can effectively enhance the cooling effectiveness and protect blade. 展开更多
关键词 conjugate heat transfer air cooling turbine parameterized method ROTOR
下载PDF
Investigation of convection cooling guide vane with conjugate heat transfer method
5
作者 陈凯 黄洪雁 +1 位作者 韩万金 冯国泰 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第4期456-460,共5页
This paper studied a certain blade with ten radial cooling holes which employed conjugate heat transfer method. The cooling air entered the cooling channel from the bottom of the blade and went out from the top, it wa... This paper studied a certain blade with ten radial cooling holes which employed conjugate heat transfer method. The cooling air entered the cooling channel from the bottom of the blade and went out from the top, it was not ejected into the main flow. This paper used different numerical conditions including different turbulence models,turbulence intensities,thermal conduction coefficients and the influence on fluid property via temperature variation. The temperature distribution and pressure distribution of the blade were compared with experimental data. The results show that the numerical results using different turbulence models are almost identical to experimental data even little deviation occurs at shock wave location. The trends of temperature distribution under different numerical conditions are coincident to experimental data,especially Reynolds stress turbulence model. It can be concluded that anisotropic turbulence models can simulate the transition from laminar to turbulence,and the influence of turbulence intensity on laminar region and transition region is more than that on developed turbulent region. 展开更多
关键词 conjugate heat transfer air cooling turbine convection cooling numerical simulation
下载PDF
Simulation of Unsteady State Performance of a Secondary Air System by the 1D-3D-Structure Coupled Method
6
作者 WU Hong LI Peng LI Yulong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第1期68-77,共10页
This paper describes the calculation method for unsteady state conditions in the secondary air systems in gas turbines. The 1D-3D-Structure coupled method was applied. A 1D code was used to model the standard componen... This paper describes the calculation method for unsteady state conditions in the secondary air systems in gas turbines. The 1D-3D-Structure coupled method was applied. A 1D code was used to model the standard components that have typical geometric characteristics. Their flow and heat transfer were described by empirical correlations based on experimental data or CFD calculations. A 3D code was used to model the non-standard components that cannot be described by typical geometric languages, while a finite element analysis was carried out to compute the structural deformation and heat conduction at certain important positions. These codes were coupled through their interfaces. Thus, the changes in heat transfer and structure and their interactions caused by exterior disturbances can be reflected. The results of the coupling method in an unsteady state showed an apparent deviation from the existing data, while the results in the steady state were highly consistent with the existing data. The difference in the results in the unsteady state was caused primarily by structural deformation that cannot be predicted by the 1D method. Thus, in order to obtain the unsteady state performance of a secondary air system more accurately and efficiently, the 1D-3D-Structure coupled method should be used. 展开更多
关键词 Secondary air system Unsteady 1D-3D-structure Coupling Gas turbine
原文传递
A minimalist approach for detecting sensor abnormality in oil and gas platforms
7
作者 Pauline Wong W.K.Wong +2 位作者 Filbert H.Juwono Lenin Gopal Mohd Amaluddin Yusoff 《Petroleum Research》 2022年第2期177-185,共9页
Compressors play an important role in day-to-day operation in most oil and gas platforms,especially in the case for maintaining gas pressure in transportation pipe.Its complex problem to detect the sensors health and ... Compressors play an important role in day-to-day operation in most oil and gas platforms,especially in the case for maintaining gas pressure in transportation pipe.Its complex problem to detect the sensors health and abnormality as the sensor reading would reflect the various states of the compressor.In ideal situation,sensor readings offer vast amounts of information on compressor health and could possibly indicate early fault of machines.Furthermore,due to harsh site and process operating conditions,sensors are often found to have drifted or failed,and there is no standard methodology to predict abnormality apart from applying emerging industrial smart sensor technologies.In this paper,we investigate a minimalist approach for detecting abnormality of compressor's shaft's RPM sensor.As the sensors in the compressor are correlated,we first use the outputs of other sensors to predict the shaft's RPM using regression-based models(neural networks and multiple linear regression).Second,we calculate the histogram of residuals by taking the difference between the predicted sensor value and the actual sensor value plus the abnormality in terms of bias/miscalibration and noise.The histogram of residuals can be used for sensor abnormality monitoring.In general,sensor states can be monitored by observing the shifting of the mean in the histogram of residuals.The sensor readings contaminated with noise can be seen by a shifted mean whose value is between the normal condition mean and the biased condition mean.This method is compact and would be relevant to monitor irregularity of the sensors. 展开更多
关键词 Sensor fault detection Multistage turbine air compressor Multiple linear regression Neural network Oil and gas industry
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部