期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
On Advanced Control Methods toward Power Capture and Load Mitigation in Wind Turbines 被引量:2
1
作者 Yuan Yuan Jiong Tang 《Engineering》 SCIE EI 2017年第4期494-503,共10页
This article provides a survey of recently emerged methods for wind turbine control. Multivariate control approaches to the optimization of power capture and the reduction of loads in components under time-varying tur... This article provides a survey of recently emerged methods for wind turbine control. Multivariate control approaches to the optimization of power capture and the reduction of loads in components under time-varying turbulent wind fields have been under extensive investigation in recent years. We divide the related research activities into three categories: modeling and dynamics of wind turbines, active control of wind turbines, and passive control of wind turbines. Regarding turbine dynamics, we discuss the physical fundamentals and present the aeroelastic analysis tools. Regarding active control, we review pitch control, torque control, and yaw control strategies encompassing mathematical formulations as well as their applications toward different objectives. Our survey mostly focuses on blade pitch control, which is considered one of the key elements in facilitating load reduction while maintaining power capture performance. Regarding passive control, we review techniques such as tuned mass dampers, smart rotors, and microtabs. Possible future directions are suggested. 展开更多
关键词 Wind turbine Control approach Power optimization load mitigation
下载PDF
Nonlinear uncertainty impact of geometric variations on aerodynamic performance of low-pressure turbine blades with ultra-high loading under extreme operational conditions
2
作者 Xiaojing WANG Zhengping ZOU +1 位作者 Chao FU Pengcheng DU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期281-300,共20页
Uncertainty impact of random geometric variations on the aerodynamic performance of low-pressure turbine blades is considerable,which is further amplified by the current ultra-high-lift design trend for weight reducti... Uncertainty impact of random geometric variations on the aerodynamic performance of low-pressure turbine blades is considerable,which is further amplified by the current ultra-high-lift design trend for weight reduction.Therefore,this uncertainty impact on ultra-highly loaded blades under extreme operational conditions near the margins with potential large-scale open separation is focused on in this study.It is demonstrated that this impact is significant,unfavourable,and nonlinear,which is clearly severer under extreme conditions.In addition to the overall attenuation and notable scattering of specific performance,the operational margins with open separation are also notably scattered with great risk of significant reduction.This scattering and nonlinearity are dominated by the variations in leading-edge thickness.The thinning of leading edge triggers local transition,enhancing downstream friction and reducing resistance to open separation,which is further exacerbated by operational deterioration.However,the opposite thickening yields less benefit,implying nonlinearity.This unfavourable impact highlights the need for robust aerodynamic design,where both a safer operational condition and a more robust blade are indispensable,i.e.,a compromise among performance,weight,and robustness.Besides the necessary limitation of loading levels,a mid-loaded design is recommended to reduce adverse pressure gradients in both the leading edge and rear region of the suction side,which helps to decrease the susceptibility of the transition and open separation to random perturbations.Similar improvements can also be achieved by appropriately thickening the leading edge. 展开更多
关键词 Ultra-highly loaded turbine blade Geometric variations Uncertainty analysis Operational margins Robust aerodynamic design NONLINEARITY
原文传递
PCTRAN Westinghouse AP1000 Power Control of Pressurized Water Reactor Using Simulink of MATLAB
3
作者 Ezeddin A. M. Ben Ihrayz 《Open Journal of Energy Efficiency》 2023年第2期25-35,共11页
This paper introduces the simulation, and controls using Simulink of MATLAB for PCTRAN (Personal Computer Transient Analysis) of the power control system (PWR) type pressurized water reactor of PWR WESTINGHOUSE AP1000... This paper introduces the simulation, and controls using Simulink of MATLAB for PCTRAN (Personal Computer Transient Analysis) of the power control system (PWR) type pressurized water reactor of PWR WESTINGHOUSE AP1000. The power controller model produces mathematical model description in nonlinear relation form in Simulink of MATLAB which is an important and popular program used at most universities for education. The power controller is described by a block diagram in this paper and some details introduce to clearly understand the work function. The results of action control compared with the PCTRAN programme in modes of automatic and manual control. 展开更多
关键词 turbine Leading Mode Reactor Leading Mode Rod Speed Program Rod Control Position turbine load Power
下载PDF
Computational Investigation of Blade slotting on a High-Load Low-Pressure Turbine Profile at various Reynolds Numbers:Part Ⅰ——Slotting Scheme's Verification 被引量:3
4
作者 Qiang Du Junqiang Zhu +1 位作者 Min Zhou Wei Li 《Journal of Thermal Science》 SCIE EI CAS CSCD 2011年第1期13-20,共8页
Boundary layer separation and reattachment is often an unavoidable feature of low pressure (LP) turbine,one of the main causes of this phenomenon is the high altitude low Reynolds number experienced by the modern LP t... Boundary layer separation and reattachment is often an unavoidable feature of low pressure (LP) turbine,one of the main causes of this phenomenon is the high altitude low Reynolds number experienced by the modern LP turbine stage in aero-engine.Although an excellent turbine airfoil design can avoid flow separation on certain extent,but within flight envelope,LP turbine's characteristic Reynolds number may varied greatly,so it will be still under the risk of the presence of separation bubble.In this two parts paper a new concept of slotted-blade was raised to testify the gain of the blade slotting.A high aerodynamic loading LP turbine blade IET-LPTA was under investigated with different Reynolds number.Computational results reveal that the blade slotting could be a way of choice to suppress separation bubble and reduce profile loss under the condition of low Reynolds number,although its position and geometry need to be further investigated. 展开更多
关键词 Boundary layer separation and reattachment High aerodynamic loading LP turbine blade Slotted-blade
原文传递
Experimental investigations of a prototype reversible pump turbine in generating mode with water head variations 被引量:1
5
作者 LI JinWei ZHANG YuNing YU JiXing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第4期604-611,共8页
Influences of water head variations on the performances of a prototype reversible pump turbine are experimentally studied in generating mode within a wide range of load conditions(from 25% to 96% of the rated power). ... Influences of water head variations on the performances of a prototype reversible pump turbine are experimentally studied in generating mode within a wide range of load conditions(from 25% to 96% of the rated power). The pressure fluctuations of the reversible pump turbine at three different water heads(with non-dimensional values being 0.48, 0.71 and 0.90) are measured and compared based on the pressure data recorded in the whole flow passage of the turbine. Furthermore, effects of monitoring points and load variations on the impeller-induced unstable behavior(e.g. blade passing frequency and its harmonics) are quantitatively discussed. Our findings reveal that water head variations play a significant role on the pressure fluctuations and their propagation mechanisms inside the reversible pump turbine. 展开更多
关键词 reversible pump turbine pumped hydro energy storage pressure fluctuation generating mode prototype part load mode
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部