Active control of turbine blade tip clearance continues to be a concern in design and control of gas turbines. Ever increasing demands for improved efficiency and higher operating temperatures require more stringent t...Active control of turbine blade tip clearance continues to be a concern in design and control of gas turbines. Ever increasing demands for improved efficiency and higher operating temperatures require more stringent tolerances on turbine tip clearance. In this paper, a turbine tip clearance control apparatus and a model of turbine tip clearance are proposed; an implicit active generalized predictive control (GPC), with auto-regressive (AR) error modification and fuzzy adjustment on control horizon, is presented, as well as a quantitative analysis method of robust per- turbation radius of the system. The active clearance control (ACC) of aero-engine turbine tip clear- ance is evaluated in a lapse-rate take-off transient, along with the comparative and quantitative analysis of the stability and robustness of the active tip clearance control system. The results show that the resultant active tip clearance control system with the improved GPC has favorable steadystate and dynamic performance and benefits of increased efficiency, reduced specific fuel consump- tion, and additional service life.展开更多
In order to reduce the losses caused by tip-leakage flow, axisymmetric contouring is applied to the casing of a two-stage unshrouded high pressure turbine(HPT) of aero-engine in this paper. This investigation focuse...In order to reduce the losses caused by tip-leakage flow, axisymmetric contouring is applied to the casing of a two-stage unshrouded high pressure turbine(HPT) of aero-engine in this paper. This investigation focuses on the effects of contoured axisymmetric-casing on the blade tipleakage flow. While the size of tip clearance remains the same as the original design, the rotor casing and the blade tip are obtained with the same contoured arc shape. Numerical calculation results show that a promotion of 0.14% to the overall efficiency is achieved. Detailed analysis indicates that it reduces the entropy generation rate caused by the complex vortex structure in the rotor tip region, especially in the tip-leakage vortex. The low velocity region in the leading edge(LE) part of the tip gap is enlarged and the pressure side/tip junction separation bubble extends much further away from the leading edge in the clearance. So the blocking effect of pressure side/tip junction separation bubble on clearance flow prevents more flow on the tip pressure side from leaking to the suction side, which results in weaker leakage vortex and less associated losses.展开更多
文摘Active control of turbine blade tip clearance continues to be a concern in design and control of gas turbines. Ever increasing demands for improved efficiency and higher operating temperatures require more stringent tolerances on turbine tip clearance. In this paper, a turbine tip clearance control apparatus and a model of turbine tip clearance are proposed; an implicit active generalized predictive control (GPC), with auto-regressive (AR) error modification and fuzzy adjustment on control horizon, is presented, as well as a quantitative analysis method of robust per- turbation radius of the system. The active clearance control (ACC) of aero-engine turbine tip clear- ance is evaluated in a lapse-rate take-off transient, along with the comparative and quantitative analysis of the stability and robustness of the active tip clearance control system. The results show that the resultant active tip clearance control system with the improved GPC has favorable steadystate and dynamic performance and benefits of increased efficiency, reduced specific fuel consump- tion, and additional service life.
文摘In order to reduce the losses caused by tip-leakage flow, axisymmetric contouring is applied to the casing of a two-stage unshrouded high pressure turbine(HPT) of aero-engine in this paper. This investigation focuses on the effects of contoured axisymmetric-casing on the blade tipleakage flow. While the size of tip clearance remains the same as the original design, the rotor casing and the blade tip are obtained with the same contoured arc shape. Numerical calculation results show that a promotion of 0.14% to the overall efficiency is achieved. Detailed analysis indicates that it reduces the entropy generation rate caused by the complex vortex structure in the rotor tip region, especially in the tip-leakage vortex. The low velocity region in the leading edge(LE) part of the tip gap is enlarged and the pressure side/tip junction separation bubble extends much further away from the leading edge in the clearance. So the blocking effect of pressure side/tip junction separation bubble on clearance flow prevents more flow on the tip pressure side from leaking to the suction side, which results in weaker leakage vortex and less associated losses.