Based on the general requirements of the coordinated development of"ecological livable"and"affluent life"in the rural revitalization strategy,the evaluation index system of desertification control ...Based on the general requirements of the coordinated development of"ecological livable"and"affluent life"in the rural revitalization strategy,the evaluation index system of desertification control was constructed,the interaction between desertification control and regional social economy and the internal space-time coordination mechanism were explored,and the quality of desertification control and its coordination degree with regional economic development were quantitatively analyzed.The decoupling mechanism of desertification governance society economy system were analyzed,and the high level for the government to promote desertification governance,constructing ecological economy coordinated development pattern to provide decision basis to Xizang desertification governance-social economic system interaction and coupling coordination development as the research object,introducing the coupling decoupling model to measure the coupling coordination model and system coordination and decoupling decoupling.Desertification control in Xizang shows a trend of gradual improvement,but the overall level is still not high and there is a lot of room for optimization.The coupling coordination degree of desertification control-social and economic system is in a steady fluctuation trend,rising from D value less than 0.55 in 2004 to 0.87 in 2018,in a state of coordinated development(good),and grey prediction analysis shows that D value is in a continuous rise.The coupling coordination degree of the six prefecture-level cities in Xizang and Ngari region is different in time and space,but the overall development trend is coordinated.The development index of desertification control and the socio-economic development index show the interaction of strong decoupling,strong negative decoupling and weak decoupling,and there are interaction effects of desertification control,economic development and social development at different scales.展开更多
A new kind of group coordination control problemgroup hybrid coordination control is investigated in this paper.The group hybrid coordination control means that in a whole multi-agent system(MAS)that consists of two s...A new kind of group coordination control problemgroup hybrid coordination control is investigated in this paper.The group hybrid coordination control means that in a whole multi-agent system(MAS)that consists of two subgroups with communications between them,agents in the two subgroups achieve consensus and containment,respectively.For MASs with both time-delays and additive noises,two group control protocols are proposed to solve this problem for the containment-oriented case and consensus-oriented case,respectively.By developing a new analysis idea,some sufficient conditions and necessary conditions related to the communication intensity betw een the two subgroups are obtained for the following two types of group hybrid coordination behavior:1)Agents in one subgroup and in another subgroup achieve weak consensus and containment,respectively;2)Agents in one subgroup and in another subgroup achieve strong consensus and containment,respectively.It is revealed that the decay of the communication impact betw een the two subgroups is necessary for the consensus-oriented case.Finally,the validity of the group control results is verified by several simulation examples.展开更多
Existing signal control systems for urban traffic are usually based on traffic flow data from fixed location detectors.Because of rapid advances in emerging vehicular communication,connected vehicle(CV)-based signal c...Existing signal control systems for urban traffic are usually based on traffic flow data from fixed location detectors.Because of rapid advances in emerging vehicular communication,connected vehicle(CV)-based signal control demonstrates significant improvements over existing conventional signal control systems.Though various CV-based signal control systems have been investigated in the past decades,these approaches still have many issues and drawbacks to overcome.We summarize typical components and structures of these existing CV-based urban traffic signal control systems and digest several important issues from the summarized vital concepts.Last,future research directions are discussed with some suggestions.We hope this survey can facilitate the connected and automated vehicle and transportation research community to efficiently approach next-generation urban traffic signal control methods and systems.展开更多
It is crucial for implementing force/position control of robotic manipulator under the constraint of unknown environment to determine the force control and the position control directions. This paper presents an on l...It is crucial for implementing force/position control of robotic manipulator under the constraint of unknown environment to determine the force control and the position control directions. This paper presents an on line algorithm to real timely estimate the tangent and the normal vectors of the constraint surface based on the measured contact force under the consideration of frictional force. A fuzzy synthesis policy is proposed to coordinate the conflict between the compliant force control and the stiff position control. An experimental study on an AdeptThree, a SCARA type robotic manipulator, is conducted. The experimental results show that the policy presented in the paper is effective.展开更多
This paper investigates a distributed coordination control scheme using an adaptive terminal sliding mode for formation flying spacecraft with coupled attitude and translational dynamics. In order to overcome the sing...This paper investigates a distributed coordination control scheme using an adaptive terminal sliding mode for formation flying spacecraft with coupled attitude and translational dynamics. In order to overcome the singularity of the traditional fast terminal sliding manifold, a novel fast terminal sliding manifold is given. And then, based on the adaptive control method, a continuous robust coordinated controller is designed to compensate external disturbances and to alleviate the chattering phenomenon. The theoretical analysis shows that the coordinated controller can guarantee the finite-time stability of the overall closed-loop system through local information exchange, and numerical simulations also demonstrate its effectiveness.展开更多
Optimal control of greenhouse climate is one of the key techniques in digital agriculture.Greenhouse climate,a nonlinear and uncertain system,consists of several major environmental factors such as temperature,humidit...Optimal control of greenhouse climate is one of the key techniques in digital agriculture.Greenhouse climate,a nonlinear and uncertain system,consists of several major environmental factors such as temperature,humidity,light intensity,and CO 2 concentration.Due to the complex coupled correlations,it is a challenge to achieve coordination control of greenhouse environmental factors.This paper proposes a model-free coordination control approach for greenhouse environmental factors based on Q-learning.Coordination control policy is found through systematic interaction with the dynamic environment to achieve optimal control for greenhouse climate with the control cost constraints.In order to decrease systematic trial-and-error risk and reduce the computational complexity in Q-learning algorithm,case-based reasoning (CBR) is seamlessly incorporated into the Q-learning process.The experimental results demonstrate that this approach is practical,highly effective and efficient.展开更多
Aiming at the deficiency of conventional traffic control method, this paper proposes a new method based on multi-agent technology for traffic control. Different from many existing methods, this paper distinguishes tra...Aiming at the deficiency of conventional traffic control method, this paper proposes a new method based on multi-agent technology for traffic control. Different from many existing methods, this paper distinguishes traffic control on the basis of the agent technology from conventional traffic control method. The composition and structure of a multi-agent system (MAS) is first discussed. Then, the step-coordination strategies of intersection-agent, segment-agent, and area-agent are put forward. The advantages of the algorithm are demonstrated by a simulation study.展开更多
Four-wheeled,individual-driven,nonholonomic structured mobile robots are widely used in industries for automated work,inspection and explora-tion purposes.The trajectory tracking control of the four-wheel individual-d...Four-wheeled,individual-driven,nonholonomic structured mobile robots are widely used in industries for automated work,inspection and explora-tion purposes.The trajectory tracking control of the four-wheel individual-driven mobile robot is one of the most blooming research topics due to its nonholonomic structure.The wheel velocities are separately adjusted to follow the trajectory in the old-fashioned kinematic control of skid-steered mobile robots.However,there is no consideration for robot dynamics when using a kinematic controller that solely addresses the robot chassis’s motion.As a result,the mobile robot has lim-ited performance,such as chattering during curved movement.In this research work,a three-tiered adaptive robust control with fuzzy parameter estimation,including dynamic modeling,direct torque control and wheel slip control is pro-posed.Fuzzy logic-based parameter estimation is a valuable tool for adjusting adaptive robust controller(ARC)parameters and tracking the trajectories with less tracking error as well as high tracking accuracy.This research considers the O type and 8 type trajectories for performance analysis of the proposed novel control technique.Our suggested approach outperforms the existing control methods such as Fuzzy,proportional–integral–derivative(PID)and adaptive robust controller with discrete projection(ARC–DP).The experimental results show that the scheduled performance index decreases by 2.77%and 4.76%.All the experimen-tal simulations obviously proved that the proposed ARC-Fuzzy performed well in smooth groud surfaces compared to other approaches.展开更多
An improved automatic voltage coordination control strategy (AVCCS) based on ;automatic voltage control (AVC) and battery energy storage control (BESC) is proposed for photovoltaic grid-connected system (PVGS)...An improved automatic voltage coordination control strategy (AVCCS) based on ;automatic voltage control (AVC) and battery energy storage control (BESC) is proposed for photovoltaic grid-connected system (PVGS) to mitigate the voltage fluctuations caused by environmental disturbances. Only AVC is used when small environ- mental disturbances happen, while BESC is incorporated with AVC to restrain the voltage fluctuations when large disturbances happen. An adjustable parameter determining the allowed amplitudes of voltage fluctuations is introduced to realize the above switching process. A benchmark low voltage distribution system including ]?VGS is established by using the commercial software Dig SILENT. Simulation results show that the voltage under AVCCS satisfies the IEEE Standard 1547, and the installed battery capacity is also reduced. Meanwhile, the battery's service life is ex- tended by avoiding frequent charges/discharges in the control process.展开更多
To realize the coordinated and stable rhythmic motion of quadruped robots (QRs), the locomotion control method of QRs based on central pattern generator (CPG) was explored. In tradi- tional control strategies base...To realize the coordinated and stable rhythmic motion of quadruped robots (QRs), the locomotion control method of QRs based on central pattern generator (CPG) was explored. In tradi- tional control strategies based on CPG, few CPG models care about the intra-limb coordination of QRs, and the durations of stance phase and swing phase are always equal. In view of these deficien- cies, a new and simpler multi-joint coordinated control method for both inter-limb and intra-limb was proposed in this paper. A layered CPG control network to realize the locomotion control of QRs was constructed by using modified Hopf oscillators. The coupled relationships among hip joints of all limbs and between hip joint and knee joint within a limb were established. Using the co-simulation method of ADAMS and MATLAB/Simulink, various gait simulation experiments were carried out and the effectiveness of the designed control network was tested. Simulation results show that the pro- posed control method is effective for QRs and can meet the control requirements of QRs' gaits with different duty factors.展开更多
This paper presents the problem of robust H∞?load frequency controller design and robust H¥ based approach called advanced frequency control (AFC). The objective is to split the task of balancing frequency ...This paper presents the problem of robust H∞?load frequency controller design and robust H¥ based approach called advanced frequency control (AFC). The objective is to split the task of balancing frequency deviations introduced by renewable energy source (RES) and load variations according to the capabilities of storage and generators. The problem we address is to design an output feedback controller such that, all admissible parameter uncertainties, the closed-loop system satisfies not only the prespecified H∞? norm constraint on the transfer function from the disturbance input to the system output. The conventional generators mainly balance the low-frequency components and load variations while the energy storage devices compensate the high- frequency components. In order to enable the controller design for storage devices located at buses with no generators, a model for the frequency at such a bus is developed. Then, AEC controllers are synthesized through decentralized static output feedback to reduce the complexity. The conditions for the existence of desired controllers are derived in terms of a linear matrix inequality (LMI) algorithm is improved. From the simulation results, the system responses with the proposed controller are the best transient responses.展开更多
Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real...Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real-world monitoring,the process will use RTK-GNSS positional perception technology,by projecting the left side of the earth from Gauss-Krueger projection method,and then carry out the Cartesian conversion based on the characteristics of drawing;steering control system is the core of the electric drive unmanned module,on the basis of the analysis of the composition of the steering system of unmanned engineering vehicles,the steering system key components such as direction,torque sensor,drive motor and other models are established,the joint simulation model of unmanned engineering vehicles is established,the steering controller is designed using the PID method,the simulation results show that the control method can meet the construction path demand for automatic steering.The path planning will first formulate the construction area with preset values and realize the steering angle correction during driving by PID algorithm,and never realize the construction-based path planning,and the results show that the method can control the straight path within the error of 10 cm and the curve error within 20 cm.With the collaboration of various modules,the automatic construction simulation results of this robot show that the design path and control method is effective.展开更多
For estimation group competition and multiagent coordination strategy, this paper introduces a notion based on multiagent group. According to the control domain, it analyzes the multiagent strategy during competition ...For estimation group competition and multiagent coordination strategy, this paper introduces a notion based on multiagent group. According to the control domain, it analyzes the multiagent strategy during competition in the macroscopic. It has been adopted in robot soccer and result enunciates that our method does not depend on competition result. It can objectively quantitatively estimate coordination strategy.展开更多
To increase the passenger transferring efficiency, the bus coordination holding control for transit hubs, which is as an important dynamic dispatching method for improving the service level of transit hubs, was studie...To increase the passenger transferring efficiency, the bus coordination holding control for transit hubs, which is as an important dynamic dispatching method for improving the service level of transit hubs, was studied in the framework of bus coordination dispatching mode. Firstly, the bus coordination holding control flow was studied based on Advanced Public Transportation Systems (APTS) environment. Then a control model was presented to optimize the bus vehicle holding time, and a genetic algorithm was designed as the solving method. In the end, an example was given to illustrate the effectiveness of the control strategy and the algorithm.展开更多
This paper presents a novel design procedure for optimizing the power distribution strategy in distributed generation system. A coordinating controller, responsible to distribute the total load power request among mul...This paper presents a novel design procedure for optimizing the power distribution strategy in distributed generation system. A coordinating controller, responsible to distribute the total load power request among multiple DG units, is suggested based on the conception of hierarchical control structure in the dynamic system. The optimal control problem was formulated as a nonlinear optimization problem subject to set of constraints. The resulting problem was solved using the Kuhn-Tucker method. Computer simulation results demonstrate that the proposed method can provide better efficiency in terms of reducing total costs compared to existing methods. In addition, the proposed optimal load distribution strategy can be easily implemented in real-time thanks to the simplicity of closed-form solutions.展开更多
In recent years, researchers have been actively pursuing research into developing robots that can be useful in many fields of industry (e.g., service, medical, and aging care). Such robots must be safe and flexible ...In recent years, researchers have been actively pursuing research into developing robots that can be useful in many fields of industry (e.g., service, medical, and aging care). Such robots must be safe and flexible so that they can coexist with people. Pneumatic actuators are useful for achieving this goal because they are lightweight units with natural compliance. Our research focuses on joint angle control for a pneumatically driven musculoskeletal model. In such a model, we use a one-degree-of-freedom joint model and a five-fingered robot hand as test beds. These models are driven by low pressure-driven pneumatic actuators, and mimic the mechanism of the human hand and musculoskeletal structure, which has an antagonistic muscle pair for each joint. We demonstrated a biologically inspired control method using the parameters antagonistic muscle ratio and antagonistic muscle activity. The concept of the method is based on coordination of an antagonistic muscle pair using these parameters. We have investigated the validity of the proposed method both theoretically and experimentally, developed a feedback control system, and conducted joint angle control by implementing the test beds.展开更多
Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy b...Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy based on a support vector machine (SVM) with inverse identification was proposed and applied to research simulating coordinated control systems. This method combines SVM inverse control and fuzzy control, taking advantage of the merits of SVM inverse controls which can be designed easily and have high reliability, and those of fuzzy controls, which respond rapidly and have good anti-jamming capability and robustness. It ensures the controller can be controlled with near instantaneous adjustments to maintain a steady state, even if the SVM is not trained well. The simulation results show that the control quality of this fuzzy-SVM compound control algorithm is high, with good performance in dynamic response speed, static stability, restraint of overshoot, and robustness.展开更多
In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on obje...In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme.展开更多
Unilateral motor impairment can disrupt the coordination between the joints,impeding the patient’s normal gait.To assist such patients to walk normally and naturally,an adaptive control algorithm based on inter-joint...Unilateral motor impairment can disrupt the coordination between the joints,impeding the patient’s normal gait.To assist such patients to walk normally and naturally,an adaptive control algorithm based on inter-joint coordination was proposed in this work for lower-limb exoskeletons.The control strategy can generate the reference trajectory of the affected leg in real time based on a motion coordination model between the joints,and adopt an adaptive controller with virtual windows to track the reference trajectory.Long Short-Term Memory(LSTM)network was also adopted to establish the coordination model between the joints of both lower limbs,which was optimized by preprocessing angle information and adding gait phase information.In the adaptive controller,the virtual windows were symmetrically distributed around the reference trajectory,and its width was adjusted according to the gait phase of the auxiliary leg.In addition,the impedance parameters of the controller were updated online to match the motion capacity of the affected leg based on the spatiotemporal symmetry factors between the bilateral gaits.The LSTM coordination model demonstrated good accuracy and generality in the gait database of seven individuals,with an average root mean square error of 3.5 and 4.1 for the hip and knee joint angle estimation,respectively.To further evaluate the control algorithm,four healthy subjects walked wearing the exoskeleton while additional weights were added around the ankle joint to simulate an asymmetric gait.From the experimental results,it was shown that the algorithm improved the gait symmetry of the subjects to a normal level while exhibiting great adaptability to different subjects.展开更多
基金supported by the Beijing Social Science Foundation Project(Grant No.18YJB011)the Ministry of Education Humanities and Social Science Research Fund for Youth Project(Grant No.20YJA790059)+2 种基金the National Social Science Foundation of China(Grant No.20FGLB022)the General Project of National Social Science Foundation of China(Grant No.19BGL052)the Innovation and Entrepreneurship Project of Beijing Forestry University(Grant No.X202110022111).
文摘Based on the general requirements of the coordinated development of"ecological livable"and"affluent life"in the rural revitalization strategy,the evaluation index system of desertification control was constructed,the interaction between desertification control and regional social economy and the internal space-time coordination mechanism were explored,and the quality of desertification control and its coordination degree with regional economic development were quantitatively analyzed.The decoupling mechanism of desertification governance society economy system were analyzed,and the high level for the government to promote desertification governance,constructing ecological economy coordinated development pattern to provide decision basis to Xizang desertification governance-social economic system interaction and coupling coordination development as the research object,introducing the coupling decoupling model to measure the coupling coordination model and system coordination and decoupling decoupling.Desertification control in Xizang shows a trend of gradual improvement,but the overall level is still not high and there is a lot of room for optimization.The coupling coordination degree of desertification control-social and economic system is in a steady fluctuation trend,rising from D value less than 0.55 in 2004 to 0.87 in 2018,in a state of coordinated development(good),and grey prediction analysis shows that D value is in a continuous rise.The coupling coordination degree of the six prefecture-level cities in Xizang and Ngari region is different in time and space,but the overall development trend is coordinated.The development index of desertification control and the socio-economic development index show the interaction of strong decoupling,strong negative decoupling and weak decoupling,and there are interaction effects of desertification control,economic development and social development at different scales.
基金supported by the National Natural Science Foundation of China(62073305)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(CUG170610)。
文摘A new kind of group coordination control problemgroup hybrid coordination control is investigated in this paper.The group hybrid coordination control means that in a whole multi-agent system(MAS)that consists of two subgroups with communications between them,agents in the two subgroups achieve consensus and containment,respectively.For MASs with both time-delays and additive noises,two group control protocols are proposed to solve this problem for the containment-oriented case and consensus-oriented case,respectively.By developing a new analysis idea,some sufficient conditions and necessary conditions related to the communication intensity betw een the two subgroups are obtained for the following two types of group hybrid coordination behavior:1)Agents in one subgroup and in another subgroup achieve weak consensus and containment,respectively;2)Agents in one subgroup and in another subgroup achieve strong consensus and containment,respectively.It is revealed that the decay of the communication impact betw een the two subgroups is necessary for the consensus-oriented case.Finally,the validity of the group control results is verified by several simulation examples.
基金supported by National Key R&D Program of China(Grant No.2018YFE0204302)National Natural Science Foundation of China(Grant No.52062015,No.61703160)+1 种基金the Talent Research Start-up Fund of Nanjing University of Aeronautics and Astronautics(YAH22019)Jiangsu High Level'Shuang-Chuang'Project.
文摘Existing signal control systems for urban traffic are usually based on traffic flow data from fixed location detectors.Because of rapid advances in emerging vehicular communication,connected vehicle(CV)-based signal control demonstrates significant improvements over existing conventional signal control systems.Though various CV-based signal control systems have been investigated in the past decades,these approaches still have many issues and drawbacks to overcome.We summarize typical components and structures of these existing CV-based urban traffic signal control systems and digest several important issues from the summarized vital concepts.Last,future research directions are discussed with some suggestions.We hope this survey can facilitate the connected and automated vehicle and transportation research community to efficiently approach next-generation urban traffic signal control methods and systems.
文摘It is crucial for implementing force/position control of robotic manipulator under the constraint of unknown environment to determine the force control and the position control directions. This paper presents an on line algorithm to real timely estimate the tangent and the normal vectors of the constraint surface based on the measured contact force under the consideration of frictional force. A fuzzy synthesis policy is proposed to coordinate the conflict between the compliant force control and the stiff position control. An experimental study on an AdeptThree, a SCARA type robotic manipulator, is conducted. The experimental results show that the policy presented in the paper is effective.
基金supported by the National Natural Science Foundation of China(61174037)the National High Technology Research and Development Program of China(863 Program)(2012AA120602CAST20120602)
文摘This paper investigates a distributed coordination control scheme using an adaptive terminal sliding mode for formation flying spacecraft with coupled attitude and translational dynamics. In order to overcome the singularity of the traditional fast terminal sliding manifold, a novel fast terminal sliding manifold is given. And then, based on the adaptive control method, a continuous robust coordinated controller is designed to compensate external disturbances and to alleviate the chattering phenomenon. The theoretical analysis shows that the coordinated controller can guarantee the finite-time stability of the overall closed-loop system through local information exchange, and numerical simulations also demonstrate its effectiveness.
基金supported by National Natural Science Foundationof China(No.60775014)
文摘Optimal control of greenhouse climate is one of the key techniques in digital agriculture.Greenhouse climate,a nonlinear and uncertain system,consists of several major environmental factors such as temperature,humidity,light intensity,and CO 2 concentration.Due to the complex coupled correlations,it is a challenge to achieve coordination control of greenhouse environmental factors.This paper proposes a model-free coordination control approach for greenhouse environmental factors based on Q-learning.Coordination control policy is found through systematic interaction with the dynamic environment to achieve optimal control for greenhouse climate with the control cost constraints.In order to decrease systematic trial-and-error risk and reduce the computational complexity in Q-learning algorithm,case-based reasoning (CBR) is seamlessly incorporated into the Q-learning process.The experimental results demonstrate that this approach is practical,highly effective and efficient.
文摘Aiming at the deficiency of conventional traffic control method, this paper proposes a new method based on multi-agent technology for traffic control. Different from many existing methods, this paper distinguishes traffic control on the basis of the agent technology from conventional traffic control method. The composition and structure of a multi-agent system (MAS) is first discussed. Then, the step-coordination strategies of intersection-agent, segment-agent, and area-agent are put forward. The advantages of the algorithm are demonstrated by a simulation study.
文摘Four-wheeled,individual-driven,nonholonomic structured mobile robots are widely used in industries for automated work,inspection and explora-tion purposes.The trajectory tracking control of the four-wheel individual-driven mobile robot is one of the most blooming research topics due to its nonholonomic structure.The wheel velocities are separately adjusted to follow the trajectory in the old-fashioned kinematic control of skid-steered mobile robots.However,there is no consideration for robot dynamics when using a kinematic controller that solely addresses the robot chassis’s motion.As a result,the mobile robot has lim-ited performance,such as chattering during curved movement.In this research work,a three-tiered adaptive robust control with fuzzy parameter estimation,including dynamic modeling,direct torque control and wheel slip control is pro-posed.Fuzzy logic-based parameter estimation is a valuable tool for adjusting adaptive robust controller(ARC)parameters and tracking the trajectories with less tracking error as well as high tracking accuracy.This research considers the O type and 8 type trajectories for performance analysis of the proposed novel control technique.Our suggested approach outperforms the existing control methods such as Fuzzy,proportional–integral–derivative(PID)and adaptive robust controller with discrete projection(ARC–DP).The experimental results show that the scheduled performance index decreases by 2.77%and 4.76%.All the experimen-tal simulations obviously proved that the proposed ARC-Fuzzy performed well in smooth groud surfaces compared to other approaches.
基金Supported by National Basic Research Program of China ("973" Program,No. 2009CB219701 and No. 2010CB234608)Tianjin Municipal Science and Technology Development Program (No. 09JCZDJC25000)Specialized Research Fund for Doctor Discipline of Ministry of Education of China (No. 20090032110064)
文摘An improved automatic voltage coordination control strategy (AVCCS) based on ;automatic voltage control (AVC) and battery energy storage control (BESC) is proposed for photovoltaic grid-connected system (PVGS) to mitigate the voltage fluctuations caused by environmental disturbances. Only AVC is used when small environ- mental disturbances happen, while BESC is incorporated with AVC to restrain the voltage fluctuations when large disturbances happen. An adjustable parameter determining the allowed amplitudes of voltage fluctuations is introduced to realize the above switching process. A benchmark low voltage distribution system including ]?VGS is established by using the commercial software Dig SILENT. Simulation results show that the voltage under AVCCS satisfies the IEEE Standard 1547, and the installed battery capacity is also reduced. Meanwhile, the battery's service life is ex- tended by avoiding frequent charges/discharges in the control process.
基金Supported by the Ministerial Level Advanced Research Foundation(40401060305)
文摘To realize the coordinated and stable rhythmic motion of quadruped robots (QRs), the locomotion control method of QRs based on central pattern generator (CPG) was explored. In tradi- tional control strategies based on CPG, few CPG models care about the intra-limb coordination of QRs, and the durations of stance phase and swing phase are always equal. In view of these deficien- cies, a new and simpler multi-joint coordinated control method for both inter-limb and intra-limb was proposed in this paper. A layered CPG control network to realize the locomotion control of QRs was constructed by using modified Hopf oscillators. The coupled relationships among hip joints of all limbs and between hip joint and knee joint within a limb were established. Using the co-simulation method of ADAMS and MATLAB/Simulink, various gait simulation experiments were carried out and the effectiveness of the designed control network was tested. Simulation results show that the pro- posed control method is effective for QRs and can meet the control requirements of QRs' gaits with different duty factors.
文摘This paper presents the problem of robust H∞?load frequency controller design and robust H¥ based approach called advanced frequency control (AFC). The objective is to split the task of balancing frequency deviations introduced by renewable energy source (RES) and load variations according to the capabilities of storage and generators. The problem we address is to design an output feedback controller such that, all admissible parameter uncertainties, the closed-loop system satisfies not only the prespecified H∞? norm constraint on the transfer function from the disturbance input to the system output. The conventional generators mainly balance the low-frequency components and load variations while the energy storage devices compensate the high- frequency components. In order to enable the controller design for storage devices located at buses with no generators, a model for the frequency at such a bus is developed. Then, AEC controllers are synthesized through decentralized static output feedback to reduce the complexity. The conditions for the existence of desired controllers are derived in terms of a linear matrix inequality (LMI) algorithm is improved. From the simulation results, the system responses with the proposed controller are the best transient responses.
文摘Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real-world monitoring,the process will use RTK-GNSS positional perception technology,by projecting the left side of the earth from Gauss-Krueger projection method,and then carry out the Cartesian conversion based on the characteristics of drawing;steering control system is the core of the electric drive unmanned module,on the basis of the analysis of the composition of the steering system of unmanned engineering vehicles,the steering system key components such as direction,torque sensor,drive motor and other models are established,the joint simulation model of unmanned engineering vehicles is established,the steering controller is designed using the PID method,the simulation results show that the control method can meet the construction path demand for automatic steering.The path planning will first formulate the construction area with preset values and realize the steering angle correction during driving by PID algorithm,and never realize the construction-based path planning,and the results show that the method can control the straight path within the error of 10 cm and the curve error within 20 cm.With the collaboration of various modules,the automatic construction simulation results of this robot show that the design path and control method is effective.
文摘For estimation group competition and multiagent coordination strategy, this paper introduces a notion based on multiagent group. According to the control domain, it analyzes the multiagent strategy during competition in the macroscopic. It has been adopted in robot soccer and result enunciates that our method does not depend on competition result. It can objectively quantitatively estimate coordination strategy.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 70601022)the National Basic Research Program of China (Grant No.2006CB705505)
文摘To increase the passenger transferring efficiency, the bus coordination holding control for transit hubs, which is as an important dynamic dispatching method for improving the service level of transit hubs, was studied in the framework of bus coordination dispatching mode. Firstly, the bus coordination holding control flow was studied based on Advanced Public Transportation Systems (APTS) environment. Then a control model was presented to optimize the bus vehicle holding time, and a genetic algorithm was designed as the solving method. In the end, an example was given to illustrate the effectiveness of the control strategy and the algorithm.
基金Sponsored by the Indiana 21stCentury Research and Technology Fund
文摘This paper presents a novel design procedure for optimizing the power distribution strategy in distributed generation system. A coordinating controller, responsible to distribute the total load power request among multiple DG units, is suggested based on the conception of hierarchical control structure in the dynamic system. The optimal control problem was formulated as a nonlinear optimization problem subject to set of constraints. The resulting problem was solved using the Kuhn-Tucker method. Computer simulation results demonstrate that the proposed method can provide better efficiency in terms of reducing total costs compared to existing methods. In addition, the proposed optimal load distribution strategy can be easily implemented in real-time thanks to the simplicity of closed-form solutions.
文摘In recent years, researchers have been actively pursuing research into developing robots that can be useful in many fields of industry (e.g., service, medical, and aging care). Such robots must be safe and flexible so that they can coexist with people. Pneumatic actuators are useful for achieving this goal because they are lightweight units with natural compliance. Our research focuses on joint angle control for a pneumatically driven musculoskeletal model. In such a model, we use a one-degree-of-freedom joint model and a five-fingered robot hand as test beds. These models are driven by low pressure-driven pneumatic actuators, and mimic the mechanism of the human hand and musculoskeletal structure, which has an antagonistic muscle pair for each joint. We demonstrated a biologically inspired control method using the parameters antagonistic muscle ratio and antagonistic muscle activity. The concept of the method is based on coordination of an antagonistic muscle pair using these parameters. We have investigated the validity of the proposed method both theoretically and experimentally, developed a feedback control system, and conducted joint angle control by implementing the test beds.
文摘Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy based on a support vector machine (SVM) with inverse identification was proposed and applied to research simulating coordinated control systems. This method combines SVM inverse control and fuzzy control, taking advantage of the merits of SVM inverse controls which can be designed easily and have high reliability, and those of fuzzy controls, which respond rapidly and have good anti-jamming capability and robustness. It ensures the controller can be controlled with near instantaneous adjustments to maintain a steady state, even if the SVM is not trained well. The simulation results show that the control quality of this fuzzy-SVM compound control algorithm is high, with good performance in dynamic response speed, static stability, restraint of overshoot, and robustness.
文摘In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme.
基金supported by the Graduate Scientific Research and Innovation Foundation of Chongqing,China(CYB19062)the China Scholarship Council(CSC202206050121).
文摘Unilateral motor impairment can disrupt the coordination between the joints,impeding the patient’s normal gait.To assist such patients to walk normally and naturally,an adaptive control algorithm based on inter-joint coordination was proposed in this work for lower-limb exoskeletons.The control strategy can generate the reference trajectory of the affected leg in real time based on a motion coordination model between the joints,and adopt an adaptive controller with virtual windows to track the reference trajectory.Long Short-Term Memory(LSTM)network was also adopted to establish the coordination model between the joints of both lower limbs,which was optimized by preprocessing angle information and adding gait phase information.In the adaptive controller,the virtual windows were symmetrically distributed around the reference trajectory,and its width was adjusted according to the gait phase of the auxiliary leg.In addition,the impedance parameters of the controller were updated online to match the motion capacity of the affected leg based on the spatiotemporal symmetry factors between the bilateral gaits.The LSTM coordination model demonstrated good accuracy and generality in the gait database of seven individuals,with an average root mean square error of 3.5 and 4.1 for the hip and knee joint angle estimation,respectively.To further evaluate the control algorithm,four healthy subjects walked wearing the exoskeleton while additional weights were added around the ankle joint to simulate an asymmetric gait.From the experimental results,it was shown that the algorithm improved the gait symmetry of the subjects to a normal level while exhibiting great adaptability to different subjects.