期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An Improved k-Equation Turbulence Model
1
作者 Md Mizanur Rahman Markku Lampinen Timo Siikonen 《Journal of Energy and Power Engineering》 2014年第11期1895-1907,共13页
LRN (low-Reynolds number) modifications to the NR (Norris-Reynolds) k-equation turbulence model are proposed and evaluated. The k and e that render the hybrid time scale are determined using the k-transport equati... LRN (low-Reynolds number) modifications to the NR (Norris-Reynolds) k-equation turbulence model are proposed and evaluated. The k and e that render the hybrid time scale are determined using the k-transport equation together with the Bradshaw and other algebraic relations. The eddy-viscosity coefficient Cμ and the empirical damping function are constructed such as to preserve the anisotropic characteristics of turbulence for application to non-equilibrium turbulent flows. The MNR (modified NR) model is applied to calculate two well-documented flows, yielding predictions in good agreement with the DNS (direct numerical simulation) and experimental data. Comparisons demonstrate that the MNR model offers a significant improvement over the original NR model and competitiveness with the Spalart-Allmaras one-equation turbulence model. The performance evaluation dictates that unlike the original NR model, the MNR model can be employed as a single-equation model instead of associating it with the two-layer model of turbulence. 展开更多
关键词 Two-layer turbulence model turbulence anisotropy hybrid time scale non-equilibrium turbulent flow.
下载PDF
Numerical study of corner separation in a linear compressor cascade using various turbulence models 被引量:14
2
作者 Liu Yangwei Yan Hao +2 位作者 Liu Yingjie Lu Lipeng Li Qiushi 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第3期639-652,共14页
Three-dimensional corner separation is a common phenomenon that significantly affects compressor performance. Turbulence model is still a weakness for RANS method on predicting corner separation flow accurately. In th... Three-dimensional corner separation is a common phenomenon that significantly affects compressor performance. Turbulence model is still a weakness for RANS method on predicting corner separation flow accurately. In the present study, numerical study of corner separation in a linear highly loaded prescribed velocity distribution (PVD) compressor cascade has been investigated using seven frequently used turbulence models. The seven turbulence models include Spalart Allmaras model, standard k-e model, realizable k-e model, standard k-to model, shear stress transport k co model, v2-fmodel and Reynolds stress model. The results of these turbulence models have been compared and analyzed in detail with available experimental data. It is found the standard k-1: model, realizable k-e model, v2-f model and Reynolds stress model can provide reasonable results for predicting three dimensional corner separation in the compressor cascade. The Spalart-Allmaras model, standard k-to model and shear stress transport k-w model overesti- mate corner separation region at incidence of 0°. The turbulence characteristics are discussed and turbulence anisotropy is observed to be stronger in the corner separating region. 展开更多
关键词 Compressor cascade Corner separation Turbomachinery CFD turbulence anisotropy turbulence models
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部