BACKGROUND Mild cognitive impairment(MCI)has a high risk of progression to Alzheimer’s disease.The disease is often accompanied by sleep disorders,and whether sleep disorders have an effect on brain function in patie...BACKGROUND Mild cognitive impairment(MCI)has a high risk of progression to Alzheimer’s disease.The disease is often accompanied by sleep disorders,and whether sleep disorders have an effect on brain function in patients with MCI is unclear.AIM To explore the near-infrared brain function characteristics of MCI with sleep disorders.METHODS A total of 120 patients with MCI(MCI group)and 50 healthy subjects(control group)were selected.All subjects underwent the functional near-infrared spec-troscopy test.Collect baseline data,Mini-Mental State Examination,Montreal Cognitive Assessment scale,fatigue severity scale(FSS)score,sleep parameter,and oxyhemoglobin(Oxy-Hb)concentration and peak time of functional near-infrared spectroscopy test during the task period.The relationship between Oxy-RESULTS Compared with the control group,the FSS score of the MCI group was higher(t=11.310),and the scores of Pittsburgh sleep quality index,sleep time,sleep efficiency,nocturnal sleep disturbance,and daytime dysfunction were higher(Z=-10.518,-10.368,-9.035,-10.661,-10.088).Subjective sleep quality and total sleep time scores were lower(Z=-11.592,-9.924).The sleep efficiency of the MCI group was lower,and the awakening frequency,rem sleep latency period,total sleep time,and oxygen desaturation index were higher(t=5.969,5.829,2.887,3.003,5.937).The Oxy-Hb concentration at T0,T1,and T2 in the MCI group was lower(t=14.940,11.280,5.721),and the peak time was higher(t=18.800,13.350,9.827).In MCI patients,the concentration of Oxy-Hb during T0 was negatively correlated with the scores of Pittsburgh sleep quality index,sleep time,total sleep time,and sleep efficiency(r=-0.611,-0.388,-0.563,-0.356).It was positively correlated with sleep efficiency and total sleep time(r=0.754,0.650),and negatively correlated with oxygen desaturation index(r=-0.561)and FSS score(r=-0.526).All comparisons were P<0.05.CONCLUSION Patients with MCI and sleep disorders have lower near-infrared brain function than normal people,which is related to sleep quality.Clinically,a comprehensive assessment of the near-infrared brain function of patients should be carried out to guide targeted treatment and improve curative effect.展开更多
Turbulence characteristics of an atmospheric surface layer over a coastal mountain area were investigated under different coordinate frames. Performances of three methods of coordinate rotation: double rotation (DR...Turbulence characteristics of an atmospheric surface layer over a coastal mountain area were investigated under different coordinate frames. Performances of three methods of coordinate rotation: double rotation (DR), triple rotation (TR), and classic planar-fit rotation (PF) were examined in terms of correction of eddy covariance flux. Using the commonly used DR and TR methods, unreasonable rotation angles are encountered at low wind speeds and cause significant run-to-run errors of some turbulence characteristics. The PF method rotates the coordinate system to an ensemble-averaged plane, and shows large tilt error due to an inaccurate fit plane over variable terrain slopes. In this paper, we propose another coordinate rotation scheme. The observational data were separated into two groups according to wind direction. The PF method was adapted to find an ensemble-averaged streamline plane for each group of hourly runs with wind speed exceeding 1.0 m s-1. Then, the coordinate systems were rotated to their respective best- fit planes for all available hourly observations. We call this the PF10 method. The implications of tilt corrections for the turbulence characteristics are discussed with a focus on integral turbulence characteristics, the spectra of wind-velocity components, and sensible heat and momentum fluxes under various atmospheric stabilities. Our results show that the adapted application of PF provides greatly improved estimates of integral turbulence characteristics in complex terrain and maintains data quality. The comparisons of the sensible heat fluxes for four coordinate rotation methods to fluxes before correction indicate that the PF10 scheme is the best to preserve consistency between fluxes.展开更多
In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated...In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated.Various wave load components,such as first-order wave loads,combined first-and second-order difference-frequency wave loads,combined first-and second-order sum-frequency wave loads,and first-and complete second-order wave loads are taken into consideration,while different turbulent environments are considered in aerodynamic loads.The com-parison is based on time histories and frequency spectra of platform motions and structural load responses and statistical values.The findings indicate that the second-order difference-frequency wave loads will significantly increase the natural frequency of low-frequency motion in the responses of the platform motion and structure load of the semi-submersible platform,which will cause structural fatigue damage.Under the action of turbulent wind,the influences of second-order wave loads on the platform motion and structural load response cannot be ignored,especially under extreme sea conditions.Therefore,in order to evaluate the dynamic responses of semi-submersible FOWT more accurately,the actual environment should be simulated more realistically.展开更多
The upper mixed layer depth(h)has a significant seasonal variation in the real ocean and the low-order statistics of Langmuir turbulence are dramatically influenced by the upper mixed layer depth.To explore the influe...The upper mixed layer depth(h)has a significant seasonal variation in the real ocean and the low-order statistics of Langmuir turbulence are dramatically influenced by the upper mixed layer depth.To explore the influence of the upper mixed layer depth on Langmuir turbulence under the condition of the wind and wave equilibrium,the changes of Langmuir turbulence characteristics with the idealized variation of the upper mixed layer depth from very shallow(h=5 m)to deep enough(h=40 m)are studied using a non-hydrostatic large eddy simulation model.The simulation results show that there is a direct entrainment depth induced by Langmuir turbulence(h_(LT))within the thermocline.The normalized depthaveraged vertical velocity variance is smaller and larger than the downwind velocity variance for the ratio of the upper mixed layer to a direct entrainment depth induced by Langmuir turbulence h/h_(LT)<1 and h/h_(LT)>1,respectively,indicating that turbulence characteristics have the essential change(i.e.,depth-averaged vertical velocity variance(DAVV)DADV for Langmuir turbulence)between h/h_(LT)<1 and h/h_(LT)>1.The rate of change of the normalized depth-averaged low-order statistics for h/h_(LT)<1 is much larger than that for h/h_(LT)>1.The reason is that the downward pressure perturbation induced by Langmuir cells is strongly inhibited by the upward reactive force of the strong stratified thermocline for h/h_(LT)<1 and the eff ect of upward reactive force on the downward pressure perturbation becomes weak for h/h_(LT)>1.Hence,the upper mixed layer depth has significant influences on Langmuir turbulence characteristics.展开更多
Based on CAMP/Tibet [Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau] turbulent data collected at the Bujiao (B J) site of the Nagqu area, the turbulent ...Based on CAMP/Tibet [Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau] turbulent data collected at the Bujiao (B J) site of the Nagqu area, the turbulent structure and transportation characteristics in the near surface layer during summer are analyzed. The main results show that the relationship between the normalized standard deviation of 3D wind speed and stability satisfies the similarity law under both unstable and stable stratifications. The relations of normalized standard deviation of temperature and specific humidity to stability only obey the "-1/3 power law" under unstable conditions. In the case of stable stratifications, their relations to stability are dispersing. The sensible heat dominates in the dry period, while in the wet period, the latent heat is larger than the sensible heat.展开更多
Wind data were collected during the 2011 typhoon Meari at heights of 10, 20, 30, and 40 m above the ground using a 40 m high anemometer tower in the coastal area near Shanghai Pudong International Airport. Wind speeds...Wind data were collected during the 2011 typhoon Meari at heights of 10, 20, 30, and 40 m above the ground using a 40 m high anemometer tower in the coastal area near Shanghai Pudong International Airport. Wind speeds and directions, turbulence intensities, gust factors, and peaks were analyzed using the time records of wind speed. The results show that turbulence intensity components in longitudinal, lateral, and vertical directions decrease with mean wind speed, regardless of elevations, and the turbulence intensities are in a linear relationship with mean wind speeds. The ratios of three turbulence intensity components(i.e. Iu, Iv, Iw) at heights of 10, 20 and 40 m were calculated and equal to be 1:0.88:0.50, 1:0.84:0.57, and 1:0.9:0.49, respectively. In addition, the gust factors in three directions exhibit a reduction with increasing mean wind speed. The peak factors at different heights show a similar trend and slightly decrease with mean wind speed; average peak factors for all 10-min data from Typhoon Meari are 2.43, 2.48, and 2.47, respectively.展开更多
The turbulence data are decomposed to multi-scales and its respective fractal dimensions are computed. The conclusions are drawn from investigating the variation of fractal dimensions. With the level of decomposition ...The turbulence data are decomposed to multi-scales and its respective fractal dimensions are computed. The conclusions are drawn from investigating the variation of fractal dimensions. With the level of decomposition increasing, the low-frequency part extracted from the turbulence signals tends to be simple and smooth, the dimensions decrease; the high-frequency part shows complex, the dimensions are fixed, about 1.70 on the average, which indicates clear self-similarity characteristics.展开更多
On the basis of the extended Huygens-Fresnel principle and the model of the refractive-index structure constant in the atmospheric turbulence proposed by the International Telecommunication Union-Radio Communication S...On the basis of the extended Huygens-Fresnel principle and the model of the refractive-index structure constant in the atmospheric turbulence proposed by the International Telecommunication Union-Radio Communication Sector,the characteristics of the partially coherent Gaussian Schell-model(GSM) beams propagating in slanted atmospheric turbulence are studied.Using the cross-spectral density function(CSDF),we derive the expressions for the effective beam radius,the spreading angle,and the average intensity.The variance of the angle-of-arrival fluctuation and the wander effect of the GSM beam in the turbulence are calculated numerically.The influences of the coherence degree,the propagation distance,the propagation height,and the waist radius on the propagation characteristics of the partially coherent beams are discussed and compared with those of the fully coherent Gaussian beams.展开更多
Large eddy simulation (LES) is used to investigate contrasting dynamic characteristics of shear turbulence (ST) and Langmuir circulation (LC) in the surface mixed layer (SML). ST is usually induced by wind for...Large eddy simulation (LES) is used to investigate contrasting dynamic characteristics of shear turbulence (ST) and Langmuir circulation (LC) in the surface mixed layer (SML). ST is usually induced by wind forcing in SML. LC can be driven by wave-current interaction that includes the roles of wind, wave and vortex forcing. The LES results show that LC suppresses the horizontal velocity and greatly modifies the downwind velocity profile, but increases the vertical velocity. The strong downweUing jets of LC accelerate and increase the downward transport of energy as compared to ST. The vertical eddy viscosity Km of LC is much larger than that of ST. Strong mixing induced by LC has two locations. They are located in the 26s-36s (Stokes depth scale) and the lower layer of the SML, respectively. Its value and position change periodically with time. In contrast, maximum Km induced by ST is located in the middle depth of the SML. The turbulent kinetic energy (TKE) generated by LC is larger than that by ST. The differences in vertical distributions of TKE and Krn are evident. Therefore, the parameterization of LC cannot be solely based on TKE. For deep SML, the convection of large-scale eddies in LC plays a main role in downward transport of energy and LC can induce stronger velocity shear (S2) near the SML base. In addition, the large-scale eddies and Sz induced by LC is changing all the time, which needs to be fully considered in the parameterization of LC.展开更多
By use of an observational experiment at the village of Tianwei, Haikou, Hainan province in 1990,characteristic turbulence values such as velocity component spectra and turbulence intensity are studied.The data were m...By use of an observational experiment at the village of Tianwei, Haikou, Hainan province in 1990,characteristic turbulence values such as velocity component spectra and turbulence intensity are studied.The data were mostly obtained in cloudy condition, so that the stability parameter (L) and thermal flux (wt) did not vary diurnally while the turbulent energy and mean-temperature did. The basic characteristics of turbulence spectra are similar to those with fine weather, hems close to local isotropy in the inertial subrange. The velocity spectra agree with the law of "-2/3 th power"in Kolmogrov’s similarity theory. The relationship between turbulent intensity of components δi/U* (i=u,v,w) and stability Z/L is studied follow ins the Monim-Obukhov(M-O) similarity theory. It is shown that the two observe the law of "1/3 th power", though the turbulent intensity and energy are generally larger than those on the flat underlying topography.展开更多
The effects of rigid vegetation on the turbulence characteristics were experimentally studied in the interior water flume. An ADV was used to determine the three dimensional turbulent velocities in clear water flow wi...The effects of rigid vegetation on the turbulence characteristics were experimentally studied in the interior water flume. An ADV was used to determine the three dimensional turbulent velocities in clear water flow without vegetation, sediment-laden flow without vegetation, sediment-laden flow with submerged vegetation and sediment-laden flow with non-submerged vegetation. By experimental and theoretical analysis, the effects of rigid vegetation on the distribution of averaged velocities, turbulence intensities and Reynolds stress were summarized. In sediment-laden flow with submerged vegetation, the averaged stream wise velocities above the top of vegetation fit well with the log distribution low. The three-dimensional turbulence intensities increase from the bottom until they reach the maximum at the top of the vegetation. The method to calculate the shear velocity with the maximum of the Reynolds stress is recommended. In sediment-laden flow with non-submerged vegetation, the turbulence problems cannot be explained by theory of bed shear flow. The average velocities, turbulence intensities and Reynolds stress approximate uniformly distributed along vertical direction.展开更多
The inherent characteristics in the rapid expansion process of supercritical fluid solution were analyzed. The temperature change resulted from the throttling expansion of the supercritical fluid, and the strong turbu...The inherent characteristics in the rapid expansion process of supercritical fluid solution were analyzed. The temperature change resulted from the throttling expansion of the supercritical fluid, and the strong turbulence in the expansion flow resulted from the quick change of the fluid pressure were experimentally measured. It was proposed that the temperature and turbulence in the expansion flow affect the particle nucleation, growth or coating process significantly.展开更多
The multifractality of energy and thermal dissipation of fully developed intermittent turbulence is investigated in the urban canopy layer under unstable conditions by the singularity spectrum for the fractal dimensio...The multifractality of energy and thermal dissipation of fully developed intermittent turbulence is investigated in the urban canopy layer under unstable conditions by the singularity spectrum for the fractal dimensions of sets of singularities characterizing multifractals. In order to obtain high-order moment properties of smallscale turbulent dissipation in the inertial range, an ultrasonic anemometer with a high sampling frequency of 100 Hz was used. The authors found that the turbulent signal could be singular everywhere. Moreover, the singular exponents of energy and thermal dissipation rates are most frequently encountered at around 0.2, which is significantly smaller than the singular exponents for a wind tunnel at a moderate Reynolds number. The evidence indicates a higher intermittency of turbulence in the urban canopy layer at a high Reynolds number, which is demonstrated by the data with high temporal resolution. Furthermore, the temperature field is more intermittent than the velocity field. In addition, a large amount of samples could be used for verification of the results.展开更多
Compound open channel flows appear in most natural rivers are of great importance in river management and flood control.In this study,large eddy simulations were carried out to simulate the compound open channel flows...Compound open channel flows appear in most natural rivers are of great importance in river management and flood control.In this study,large eddy simulations were carried out to simulate the compound open channel flows with four different depth ratios(hr=0.10,0.25,0.50,and 0.75).The main flow velocity,secondary flow,Reynolds stress,and bed shear stress were obtained from numerical simulations.The depth-averaged stream wise momentum equation was used to quantify the lateral momentum exchange between the main channel and floodplain.The instantaneous coherent structures were presented by the Q criterion method.The impact of hr on flow structure and turbulence charac-teristics was analyzed.The results showed that with the increase of hr,the high velocity area in the main channel shifted to the floodplain,and the dip phenomenon became more obvious;the Reynolds stress largely contributed to the lateral momentum exchange within the flows near the side walls of floodplain;and the vortex structures were found to significantly increase in the floodplain region.展开更多
This paper presents an experimental investigation of the turbulent reacting flow in a swirl combustor with staged air injection. The air injected into the combustor is composed of the primary swirling jet and the seco...This paper presents an experimental investigation of the turbulent reacting flow in a swirl combustor with staged air injection. The air injected into the combustor is composed of the primary swirling jet and the secon-dary non-swirling jet. A three dimension-laser particle dynamic analyzer (PDA) was employed to measure the in-stantaneous gas velocity. The probability density functions (PDF) for the instantaneous gas axial and tangential ve-locities at each measuring location, as well as the radial profiles of the root mean square of fluctuating gas axial and tangential velocities and the second-order moment for the fluctuating gas axial and tangential velocities are ob-tained. The measured results delineate the turbulence properties of the swirling reacting flow under the conditions of staged combustion.展开更多
As known from previous studies, is a post-transitional flow that is turbulent the deterministic turbulence (DeTu) according to the generally accepted statistical characteristics but possesses, meanwhile, a significa...As known from previous studies, is a post-transitional flow that is turbulent the deterministic turbulence (DeTu) according to the generally accepted statistical characteristics but possesses, meanwhile, a significant degree of determinism, i.e., reproducibility of its instantaneous structure. It is found that the DeTu can occur in those cases when transition is caused by convective instabilities; in boundary layers, in particular. The present paper is devoted to a brief description of history of discovering the DeTu phenomenon, as well as to some recent advance in investigation of instantaneous and statistical properties of such turbulent boundary layer flows.展开更多
Confined impinging jet reactor(CIJR) is a typical process intensification device used in the chemical industry.In this study, two dimensional Particle Image Velocimetry(PIV) and Large Eddy Simulation(LES) method were ...Confined impinging jet reactor(CIJR) is a typical process intensification device used in the chemical industry.In this study, two dimensional Particle Image Velocimetry(PIV) and Large Eddy Simulation(LES) method were used to investigate the flow field in a CIJR with jets of diameter 3 mm under highly turbulent condition.The results showed LES can predict the velocity and Turbulence Kinetic Energy(TKE) distributions in the reactor well by comparing with the PIV results.In the CIJR, the stagnation point fluctuates with the turbulence, and its instantaneous position accords with the normal distribution.Three methods, including s–t representation, Lumley–Newman triangle and A–G representation, were used to compare the turbulence anisotropy in the mixing chamber.It was found that the anisotropy in the impinging area and at the edge of impinging jet was strong and the maximum deviation was up to 40%.The results from 2 DPIV would lead to an overestimation of the turbulent kinetic energy as much as 20% to 30% than the results from the three dimensional numerical simulation.展开更多
The distributive characteristics of turbulence, turbulent velocity, turbulent intensity and Reynolds stress, in horizontal and vertical direction on leeward side of windbreak were discussed in this paper. The results ...The distributive characteristics of turbulence, turbulent velocity, turbulent intensity and Reynolds stress, in horizontal and vertical direction on leeward side of windbreak were discussed in this paper. The results show that all the three kinds of parameters of turbulence have the similar distributive patterns in lee, their peaks were around 10H for horizontal and Z/ H = 1 for vertical. The windbreak is important barrier to affect the structure and distribution of wind speed and turbulence. Porosities of windbreaks could alter the patterns of turbulence, therefore, affect the abilities and functions of windbreaks.展开更多
In the present paper the coherent structures in the outer region of turbulent boundary layer were investigated experimentally and analytically. From the observation of the how field over smooth wall, rough wall and sa...In the present paper the coherent structures in the outer region of turbulent boundary layer were investigated experimentally and analytically. From the observation of the how field over smooth wall, rough wall and sand wave wall, it was found that the direct effect of wall on the flow structure can reach y(+1) approximate to 100, and both lateral and vertical vortices exist in the outer region, but the coherent structures in the outer region are mainly the formation, development and decay of the large-scale lateral vortices. By experimental and dynamical analysis, some influence factors and their relations associated with the dynamical process of lateral vortices were deduced.展开更多
This paper solves the three-dimensional Navier-Stokes equation by a fractional-step method with the Reynolds number Reτ=194 and the rotation number Nτ=0-0.12. When Nτ is less than 0.06, the turbulence statistics re...This paper solves the three-dimensional Navier-Stokes equation by a fractional-step method with the Reynolds number Reτ=194 and the rotation number Nτ=0-0.12. When Nτ is less than 0.06, the turbulence statistics relevant to the spanwise velocity fluctuation are enhanced, but other statistics are suppressed. When Nτ is larger than 0.06, all the turbulence statistics decrease significantly. Reynolds stress budgets elucidate that turbulence kinetic energy in the vertical direction is transferred into the streamwise and spanwise directions. The flow structures exhibit that the bursting processes near the bottom wall are ejected toward the free surface. Evident change of near-surface streak structures of the velocity fluctuations are revealed.展开更多
文摘BACKGROUND Mild cognitive impairment(MCI)has a high risk of progression to Alzheimer’s disease.The disease is often accompanied by sleep disorders,and whether sleep disorders have an effect on brain function in patients with MCI is unclear.AIM To explore the near-infrared brain function characteristics of MCI with sleep disorders.METHODS A total of 120 patients with MCI(MCI group)and 50 healthy subjects(control group)were selected.All subjects underwent the functional near-infrared spec-troscopy test.Collect baseline data,Mini-Mental State Examination,Montreal Cognitive Assessment scale,fatigue severity scale(FSS)score,sleep parameter,and oxyhemoglobin(Oxy-Hb)concentration and peak time of functional near-infrared spectroscopy test during the task period.The relationship between Oxy-RESULTS Compared with the control group,the FSS score of the MCI group was higher(t=11.310),and the scores of Pittsburgh sleep quality index,sleep time,sleep efficiency,nocturnal sleep disturbance,and daytime dysfunction were higher(Z=-10.518,-10.368,-9.035,-10.661,-10.088).Subjective sleep quality and total sleep time scores were lower(Z=-11.592,-9.924).The sleep efficiency of the MCI group was lower,and the awakening frequency,rem sleep latency period,total sleep time,and oxygen desaturation index were higher(t=5.969,5.829,2.887,3.003,5.937).The Oxy-Hb concentration at T0,T1,and T2 in the MCI group was lower(t=14.940,11.280,5.721),and the peak time was higher(t=18.800,13.350,9.827).In MCI patients,the concentration of Oxy-Hb during T0 was negatively correlated with the scores of Pittsburgh sleep quality index,sleep time,total sleep time,and sleep efficiency(r=-0.611,-0.388,-0.563,-0.356).It was positively correlated with sleep efficiency and total sleep time(r=0.754,0.650),and negatively correlated with oxygen desaturation index(r=-0.561)and FSS score(r=-0.526).All comparisons were P<0.05.CONCLUSION Patients with MCI and sleep disorders have lower near-infrared brain function than normal people,which is related to sleep quality.Clinically,a comprehensive assessment of the near-infrared brain function of patients should be carried out to guide targeted treatment and improve curative effect.
基金supported by the National High Technology Research and Development Program of China(Grant No.2007AA022201)the National Special Fund for Water(Grant No.2008ZX07103007)+1 种基金the National Basic Research Program of China (Grant Nos.2010CB428503 and 2011CB403406)the National Natural Science Foundation of China(Grant Nos. 40805006 and 41075012)
文摘Turbulence characteristics of an atmospheric surface layer over a coastal mountain area were investigated under different coordinate frames. Performances of three methods of coordinate rotation: double rotation (DR), triple rotation (TR), and classic planar-fit rotation (PF) were examined in terms of correction of eddy covariance flux. Using the commonly used DR and TR methods, unreasonable rotation angles are encountered at low wind speeds and cause significant run-to-run errors of some turbulence characteristics. The PF method rotates the coordinate system to an ensemble-averaged plane, and shows large tilt error due to an inaccurate fit plane over variable terrain slopes. In this paper, we propose another coordinate rotation scheme. The observational data were separated into two groups according to wind direction. The PF method was adapted to find an ensemble-averaged streamline plane for each group of hourly runs with wind speed exceeding 1.0 m s-1. Then, the coordinate systems were rotated to their respective best- fit planes for all available hourly observations. We call this the PF10 method. The implications of tilt corrections for the turbulence characteristics are discussed with a focus on integral turbulence characteristics, the spectra of wind-velocity components, and sensible heat and momentum fluxes under various atmospheric stabilities. Our results show that the adapted application of PF provides greatly improved estimates of integral turbulence characteristics in complex terrain and maintains data quality. The comparisons of the sensible heat fluxes for four coordinate rotation methods to fluxes before correction indicate that the PF10 scheme is the best to preserve consistency between fluxes.
基金supported by the Natural Science Foundation of Zhejiang Province(Grant No.LHZ21E090003)the National Nature Science Foundation of China(Grant No.52171279)+1 种基金Zhoushan Science&Technology Project(Grant No.2021C21002)supported by CNPq(Conselho Nacional de Desenvolvimento Científico e Tecnológico,Grant No.301474/2017-6).
文摘In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated.Various wave load components,such as first-order wave loads,combined first-and second-order difference-frequency wave loads,combined first-and second-order sum-frequency wave loads,and first-and complete second-order wave loads are taken into consideration,while different turbulent environments are considered in aerodynamic loads.The com-parison is based on time histories and frequency spectra of platform motions and structural load responses and statistical values.The findings indicate that the second-order difference-frequency wave loads will significantly increase the natural frequency of low-frequency motion in the responses of the platform motion and structure load of the semi-submersible platform,which will cause structural fatigue damage.Under the action of turbulent wind,the influences of second-order wave loads on the platform motion and structural load response cannot be ignored,especially under extreme sea conditions.Therefore,in order to evaluate the dynamic responses of semi-submersible FOWT more accurately,the actual environment should be simulated more realistically.
基金Supported by the National Key Research and Development Program of China(No.2018YFC1405701)the National Natural Science Foundation of China(Nos.92158204,41506001,42076026,41876017,42176027)+2 种基金the Project supported by Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0304)the Open Research Project Programme of the State Key Laboratory of Internet of Things for Smart City(University of Macao)(No.SKL-IoTSC(UM)-2021-2023/ORPF/A20/2022)the State Key Laboratory of Tropical Oceanography(No.LTOZZ2101)。
文摘The upper mixed layer depth(h)has a significant seasonal variation in the real ocean and the low-order statistics of Langmuir turbulence are dramatically influenced by the upper mixed layer depth.To explore the influence of the upper mixed layer depth on Langmuir turbulence under the condition of the wind and wave equilibrium,the changes of Langmuir turbulence characteristics with the idealized variation of the upper mixed layer depth from very shallow(h=5 m)to deep enough(h=40 m)are studied using a non-hydrostatic large eddy simulation model.The simulation results show that there is a direct entrainment depth induced by Langmuir turbulence(h_(LT))within the thermocline.The normalized depthaveraged vertical velocity variance is smaller and larger than the downwind velocity variance for the ratio of the upper mixed layer to a direct entrainment depth induced by Langmuir turbulence h/h_(LT)<1 and h/h_(LT)>1,respectively,indicating that turbulence characteristics have the essential change(i.e.,depth-averaged vertical velocity variance(DAVV)DADV for Langmuir turbulence)between h/h_(LT)<1 and h/h_(LT)>1.The rate of change of the normalized depth-averaged low-order statistics for h/h_(LT)<1 is much larger than that for h/h_(LT)>1.The reason is that the downward pressure perturbation induced by Langmuir cells is strongly inhibited by the upward reactive force of the strong stratified thermocline for h/h_(LT)<1 and the eff ect of upward reactive force on the downward pressure perturbation becomes weak for h/h_(LT)>1.Hence,the upper mixed layer depth has significant influences on Langmuir turbulence characteristics.
基金This research was supported by the Innovation Project of the Chinese Academy of Sciences (KZCX3-SW-339 and KZCX3-SW-329) the National Natural Science Foundation of China (Grant No. 40520140126).
文摘Based on CAMP/Tibet [Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau] turbulent data collected at the Bujiao (B J) site of the Nagqu area, the turbulent structure and transportation characteristics in the near surface layer during summer are analyzed. The main results show that the relationship between the normalized standard deviation of 3D wind speed and stability satisfies the similarity law under both unstable and stable stratifications. The relations of normalized standard deviation of temperature and specific humidity to stability only obey the "-1/3 power law" under unstable conditions. In the case of stable stratifications, their relations to stability are dispersing. The sensible heat dominates in the dry period, while in the wet period, the latent heat is larger than the sensible heat.
基金Projects(51378396,51678452,51708074,2014M560706)supported by General Program of National Natural Science Foundation of ChinaProject(2014M560706)supported by the China Postdoctoral Science Foundation
文摘Wind data were collected during the 2011 typhoon Meari at heights of 10, 20, 30, and 40 m above the ground using a 40 m high anemometer tower in the coastal area near Shanghai Pudong International Airport. Wind speeds and directions, turbulence intensities, gust factors, and peaks were analyzed using the time records of wind speed. The results show that turbulence intensity components in longitudinal, lateral, and vertical directions decrease with mean wind speed, regardless of elevations, and the turbulence intensities are in a linear relationship with mean wind speeds. The ratios of three turbulence intensity components(i.e. Iu, Iv, Iw) at heights of 10, 20 and 40 m were calculated and equal to be 1:0.88:0.50, 1:0.84:0.57, and 1:0.9:0.49, respectively. In addition, the gust factors in three directions exhibit a reduction with increasing mean wind speed. The peak factors at different heights show a similar trend and slightly decrease with mean wind speed; average peak factors for all 10-min data from Typhoon Meari are 2.43, 2.48, and 2.47, respectively.
基金This research is supported by the Key Project of National Natural Science Foundation of China (No.40035010
文摘The turbulence data are decomposed to multi-scales and its respective fractal dimensions are computed. The conclusions are drawn from investigating the variation of fractal dimensions. With the level of decomposition increasing, the low-frequency part extracted from the turbulence signals tends to be simple and smooth, the dimensions decrease; the high-frequency part shows complex, the dimensions are fixed, about 1.70 on the average, which indicates clear self-similarity characteristics.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61172031)
文摘On the basis of the extended Huygens-Fresnel principle and the model of the refractive-index structure constant in the atmospheric turbulence proposed by the International Telecommunication Union-Radio Communication Sector,the characteristics of the partially coherent Gaussian Schell-model(GSM) beams propagating in slanted atmospheric turbulence are studied.Using the cross-spectral density function(CSDF),we derive the expressions for the effective beam radius,the spreading angle,and the average intensity.The variance of the angle-of-arrival fluctuation and the wander effect of the GSM beam in the turbulence are calculated numerically.The influences of the coherence degree,the propagation distance,the propagation height,and the waist radius on the propagation characteristics of the partially coherent beams are discussed and compared with those of the fully coherent Gaussian beams.
基金The National Basic Research Program of China(973 Program)under contract No.2011CB403504the China Postdoctoral Science Foundation under contract No.2013M542216the National Natural Science Foundation of China under contract No.41206011
文摘Large eddy simulation (LES) is used to investigate contrasting dynamic characteristics of shear turbulence (ST) and Langmuir circulation (LC) in the surface mixed layer (SML). ST is usually induced by wind forcing in SML. LC can be driven by wave-current interaction that includes the roles of wind, wave and vortex forcing. The LES results show that LC suppresses the horizontal velocity and greatly modifies the downwind velocity profile, but increases the vertical velocity. The strong downweUing jets of LC accelerate and increase the downward transport of energy as compared to ST. The vertical eddy viscosity Km of LC is much larger than that of ST. Strong mixing induced by LC has two locations. They are located in the 26s-36s (Stokes depth scale) and the lower layer of the SML, respectively. Its value and position change periodically with time. In contrast, maximum Km induced by ST is located in the middle depth of the SML. The turbulent kinetic energy (TKE) generated by LC is larger than that by ST. The differences in vertical distributions of TKE and Krn are evident. Therefore, the parameterization of LC cannot be solely based on TKE. For deep SML, the convection of large-scale eddies in LC plays a main role in downward transport of energy and LC can induce stronger velocity shear (S2) near the SML base. In addition, the large-scale eddies and Sz induced by LC is changing all the time, which needs to be fully considered in the parameterization of LC.
文摘By use of an observational experiment at the village of Tianwei, Haikou, Hainan province in 1990,characteristic turbulence values such as velocity component spectra and turbulence intensity are studied.The data were mostly obtained in cloudy condition, so that the stability parameter (L) and thermal flux (wt) did not vary diurnally while the turbulent energy and mean-temperature did. The basic characteristics of turbulence spectra are similar to those with fine weather, hems close to local isotropy in the inertial subrange. The velocity spectra agree with the law of "-2/3 th power"in Kolmogrov’s similarity theory. The relationship between turbulent intensity of components δi/U* (i=u,v,w) and stability Z/L is studied follow ins the Monim-Obukhov(M-O) similarity theory. It is shown that the two observe the law of "1/3 th power", though the turbulent intensity and energy are generally larger than those on the flat underlying topography.
文摘The effects of rigid vegetation on the turbulence characteristics were experimentally studied in the interior water flume. An ADV was used to determine the three dimensional turbulent velocities in clear water flow without vegetation, sediment-laden flow without vegetation, sediment-laden flow with submerged vegetation and sediment-laden flow with non-submerged vegetation. By experimental and theoretical analysis, the effects of rigid vegetation on the distribution of averaged velocities, turbulence intensities and Reynolds stress were summarized. In sediment-laden flow with submerged vegetation, the averaged stream wise velocities above the top of vegetation fit well with the log distribution low. The three-dimensional turbulence intensities increase from the bottom until they reach the maximum at the top of the vegetation. The method to calculate the shear velocity with the maximum of the Reynolds stress is recommended. In sediment-laden flow with non-submerged vegetation, the turbulence problems cannot be explained by theory of bed shear flow. The average velocities, turbulence intensities and Reynolds stress approximate uniformly distributed along vertical direction.
基金Supported by the National Natural Science Foundation of China(No.29906004)
文摘The inherent characteristics in the rapid expansion process of supercritical fluid solution were analyzed. The temperature change resulted from the throttling expansion of the supercritical fluid, and the strong turbulence in the expansion flow resulted from the quick change of the fluid pressure were experimentally measured. It was proposed that the temperature and turbulence in the expansion flow affect the particle nucleation, growth or coating process significantly.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472272 and 91215302)the Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201206041)
文摘The multifractality of energy and thermal dissipation of fully developed intermittent turbulence is investigated in the urban canopy layer under unstable conditions by the singularity spectrum for the fractal dimensions of sets of singularities characterizing multifractals. In order to obtain high-order moment properties of smallscale turbulent dissipation in the inertial range, an ultrasonic anemometer with a high sampling frequency of 100 Hz was used. The authors found that the turbulent signal could be singular everywhere. Moreover, the singular exponents of energy and thermal dissipation rates are most frequently encountered at around 0.2, which is significantly smaller than the singular exponents for a wind tunnel at a moderate Reynolds number. The evidence indicates a higher intermittency of turbulence in the urban canopy layer at a high Reynolds number, which is demonstrated by the data with high temporal resolution. Furthermore, the temperature field is more intermittent than the velocity field. In addition, a large amount of samples could be used for verification of the results.
基金supported by the Fundamental Research Funds for the Central Universities(Grants No.B200202116 and B200204044)the National Natural Science Foundation of China(Grant No.51879086)the 111 Project from the Minstry of Education and State Administration of Foreign Expert Affairs of China(Grant No.B17015).
文摘Compound open channel flows appear in most natural rivers are of great importance in river management and flood control.In this study,large eddy simulations were carried out to simulate the compound open channel flows with four different depth ratios(hr=0.10,0.25,0.50,and 0.75).The main flow velocity,secondary flow,Reynolds stress,and bed shear stress were obtained from numerical simulations.The depth-averaged stream wise momentum equation was used to quantify the lateral momentum exchange between the main channel and floodplain.The instantaneous coherent structures were presented by the Q criterion method.The impact of hr on flow structure and turbulence charac-teristics was analyzed.The results showed that with the increase of hr,the high velocity area in the main channel shifted to the floodplain,and the dip phenomenon became more obvious;the Reynolds stress largely contributed to the lateral momentum exchange within the flows near the side walls of floodplain;and the vortex structures were found to significantly increase in the floodplain region.
基金Supported jointly by the National Natural Science Foundation of China (No.59806006) and the Laboratory Open Fund ofTsinghua University.
文摘This paper presents an experimental investigation of the turbulent reacting flow in a swirl combustor with staged air injection. The air injected into the combustor is composed of the primary swirling jet and the secon-dary non-swirling jet. A three dimension-laser particle dynamic analyzer (PDA) was employed to measure the in-stantaneous gas velocity. The probability density functions (PDF) for the instantaneous gas axial and tangential ve-locities at each measuring location, as well as the radial profiles of the root mean square of fluctuating gas axial and tangential velocities and the second-order moment for the fluctuating gas axial and tangential velocities are ob-tained. The measured results delineate the turbulence properties of the swirling reacting flow under the conditions of staged combustion.
基金supported by the budget of the Russian Academy of Sciences
文摘As known from previous studies, is a post-transitional flow that is turbulent the deterministic turbulence (DeTu) according to the generally accepted statistical characteristics but possesses, meanwhile, a significant degree of determinism, i.e., reproducibility of its instantaneous structure. It is found that the DeTu can occur in those cases when transition is caused by convective instabilities; in boundary layers, in particular. The present paper is devoted to a brief description of history of discovering the DeTu phenomenon, as well as to some recent advance in investigation of instantaneous and statistical properties of such turbulent boundary layer flows.
基金Supported by the National Key R&D Program of China(2017YFB0306701)
文摘Confined impinging jet reactor(CIJR) is a typical process intensification device used in the chemical industry.In this study, two dimensional Particle Image Velocimetry(PIV) and Large Eddy Simulation(LES) method were used to investigate the flow field in a CIJR with jets of diameter 3 mm under highly turbulent condition.The results showed LES can predict the velocity and Turbulence Kinetic Energy(TKE) distributions in the reactor well by comparing with the PIV results.In the CIJR, the stagnation point fluctuates with the turbulence, and its instantaneous position accords with the normal distribution.Three methods, including s–t representation, Lumley–Newman triangle and A–G representation, were used to compare the turbulence anisotropy in the mixing chamber.It was found that the anisotropy in the impinging area and at the edge of impinging jet was strong and the maximum deviation was up to 40%.The results from 2 DPIV would lead to an overestimation of the turbulent kinetic energy as much as 20% to 30% than the results from the three dimensional numerical simulation.
文摘The distributive characteristics of turbulence, turbulent velocity, turbulent intensity and Reynolds stress, in horizontal and vertical direction on leeward side of windbreak were discussed in this paper. The results show that all the three kinds of parameters of turbulence have the similar distributive patterns in lee, their peaks were around 10H for horizontal and Z/ H = 1 for vertical. The windbreak is important barrier to affect the structure and distribution of wind speed and turbulence. Porosities of windbreaks could alter the patterns of turbulence, therefore, affect the abilities and functions of windbreaks.
基金the National Natural Science Foundation of China
文摘In the present paper the coherent structures in the outer region of turbulent boundary layer were investigated experimentally and analytically. From the observation of the how field over smooth wall, rough wall and sand wave wall, it was found that the direct effect of wall on the flow structure can reach y(+1) approximate to 100, and both lateral and vertical vortices exist in the outer region, but the coherent structures in the outer region are mainly the formation, development and decay of the large-scale lateral vortices. By experimental and dynamical analysis, some influence factors and their relations associated with the dynamical process of lateral vortices were deduced.
基金Project supported by the National Natural Science Foundation of China(Grant Nos10772166and10672151)the Foundation of China Academy of Engineering Physics(Grant No20050104)
文摘This paper solves the three-dimensional Navier-Stokes equation by a fractional-step method with the Reynolds number Reτ=194 and the rotation number Nτ=0-0.12. When Nτ is less than 0.06, the turbulence statistics relevant to the spanwise velocity fluctuation are enhanced, but other statistics are suppressed. When Nτ is larger than 0.06, all the turbulence statistics decrease significantly. Reynolds stress budgets elucidate that turbulence kinetic energy in the vertical direction is transferred into the streamwise and spanwise directions. The flow structures exhibit that the bursting processes near the bottom wall are ejected toward the free surface. Evident change of near-surface streak structures of the velocity fluctuations are revealed.