期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Analytical estimation of mixing coefficient induced by surface wave-generated turbulence based on the equilibrium solution of the second-order turbulence closure model 被引量:7
1
作者 YUAN YeLi QIAO FangLi +1 位作者 YIN XunQiang HAN Lei 《Science China Earth Sciences》 SCIE EI CAS 2013年第1期71-80,共10页
Based on the equations of motion and the assumption that ocean turbulence is of isotropy or quasi-isotropy, we derived the closure equations of the second-order moments and the variation equations for characteristic q... Based on the equations of motion and the assumption that ocean turbulence is of isotropy or quasi-isotropy, we derived the closure equations of the second-order moments and the variation equations for characteristic quantities, which describe the mechanisms of advection transport and shear instability by the sum of wave-like and eddy-like motions and circulation. Given that ocean turbulence generated by wave breaking is dominant at the ocean surface, we presented the boundary conditions of the turbulence kinetic energy and its dissipation rate, which are determined by energy loss from wave breaking and entrainment depth respectively. According to the equilibrium solution of the variation equations and available data of the dissipation rate, we obtained an analytical estimation of the characteristic quantities of surface-wave-generated turbulence in the upper ocean and its related mixing coefficient. The derived kinetic dissipation rate was validated by field measurements qualitatively and quantitatively, and the mixing coefficient had fairly good consistency with previous results based on the Prandtl mixing length theory. 展开更多
关键词 mixing coefficient induced by surface wave-generated turbulence second-order turbulence closure model equilibriumsolution
原文传递
A climatic dataset of ocean vertical turbulent mixing coefficient based on real energy sources 被引量:4
2
作者 ZHANG Yu LIN YiHua HUANG RuiXin 《Science China Earth Sciences》 SCIE EI CAS 2014年第10期2435-2446,共12页
Using data on wind stress, significant height of combined wind waves and swell, potential temperature, salinity and seawater velocity, as well as objectively-analyzed in situ temperature and salinity, we established a... Using data on wind stress, significant height of combined wind waves and swell, potential temperature, salinity and seawater velocity, as well as objectively-analyzed in situ temperature and salinity, we established a global ocean dataset of calculated wind- and tide-induced vertical turbulent mixing coefficients. We then examined energy conservation of ocean vertical mixing from the point of view of ocean wind energy inputs, gravitational potential energy change due to mixing(with and without artificially limiting themixing coefficient), and K-theory vertical turbulent parameterization schemes regardless of energy inputs. Our research showed that calculating the mixing coefficient with average data and artificial limiting the mixing coefficient can cause a remarkable lack of energy conservation, with energy losses of up to 90% and changes in the energy oscillation period. The data also show that wind can introduce a huge amount of energy into the upper layers of the Southern Ocean, and that tidesdo so in regions around underwater mountains. We argue that it is necessary to take wind and tidal energy inputs into account forlong-term ocean climate numerical simulations. We believe that using this ocean vertical turbulent mixing coefficient climatic dataset is a fast and efficient method to maintain the ocean energy balance in ocean modeling research. 展开更多
关键词 energy conservation spectrum analysis turbulent mixing parameterization vertical turbulent mixing coefficient
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部