The Lagrangian equations of motion of small particle in turbulent boundary layer flows, taking into account the effects of the drug force caused by the wall presence, the Saffman and the Magus lift forces et al., is s...The Lagrangian equations of motion of small particle in turbulent boundary layer flows, taking into account the effects of the drug force caused by the wall presence, the Saffman and the Magus lift forces et al., is studied. Using the spectral method, analytical expression relating to the Lagrangian power spectra of particle velocity to that of the fluid are developed and the results are used to evaluate various responses statistics. In this paper, the results clearly show that the turbulent diffusivity of the particle may be larger than that of the fluid for a period of long-time.展开更多
A new mathematical model, fluctuation spectrum random trajectory model (FSRTM) for the particle motion in environmental fluid was developed using Lagrangian method, in which the time mean velocity of the fluid was ca...A new mathematical model, fluctuation spectrum random trajectory model (FSRTM) for the particle motion in environmental fluid was developed using Lagrangian method, in which the time mean velocity of the fluid was calculated by a time mean velocity formula for two dimensional homogeneous shear turbulent flows in open channel, the velocity fluctuation of the fluid was determined by Fourier expansion and fluctuation spectrum, and the particle motion equation was solved using Ronge Kutta method. For comparison, the spherical cation exchange resins with a density of 1 44 g/cm\+3 and diameters ranging from 0 50—0 60 mm, 0 60—0 70 mm and 0 80—0 90 mm were selected as the experimental solid particles, and their moving velocities and trajectories in shear turbulent flows with the flow Reynolds number of 4710, 10240, 11900 and 20760 were investigated. The comparing analyses of the modeled results with the measured results have shown that the model developed in this paper can describe the motions of the particles in shear turbulent flow.展开更多
This paper presents a new numerical method to simulate the high velocity turbulent flow with free surface by solving two-dimensional incompressible unsteady Navier-Stokes Eqs. , together with the k-ε turbulence model...This paper presents a new numerical method to simulate the high velocity turbulent flow with free surface by solving two-dimensional incompressible unsteady Navier-Stokes Eqs. , together with the k-ε turbulence model. In order to treat the non-rectangular boundary (or curvilinear boundary), orthogonal boundary-fitted grid is used and the Navier-Stokes Eqs. and k-ε turbulence model are rewritten and discreted in orthogonal curvilinear coordinates. Meanwhile, gas-liquid two-field model theory is introduced to treat the free-surface problem.展开更多
The renormalization group (RNG) turbulent model is used to investigate the fluid resonance in a moonpool formed by two identical rectangular hulls under synchronous heaving excitation (e.g., a catamaran or dual pontoo...The renormalization group (RNG) turbulent model is used to investigate the fluid resonance in a moonpool formed by two identical rectangular hulls under synchronous heaving excitation (e.g., a catamaran or dual pontoon). The numerical model is validated against the available experimental data, and accurate numerical solutions are obtained. The present study focuses on the amplitude of the moving hulls and the edge configuration of the moonpool entrance, as well as their influences on the piston-modal resonant wave in the moonpool. The dependence of the resonant wave amplitude in the moonpool on the heaving amplitude, the characteristic moonpool dimensions and the local velocity magnitude is derived based on a theoretical analysis, and the results are in good agreement with the RNG turbulent solutions. Five different edge profiles are considered, including two convex edges, two concave edges (both with various dimensions), and a sharp edge. Numerical examinations show that the edge configuration has a significant influence on the piston-modal resonant responses, a larger opening size leading to a higher resonant frequency and a larger resonant wave amplitude in the moonpool. Various flow patterns of the piston-modal resonance in the vicinity of the moonpool entrance are also identified, mainly depending on the edge profile. More intensive turbulent and vortical flows give rise to more significant dissipation, accounting for the smaller relative wave amplitude in the moonpool. With the increase of the heaving amplitude, the relative piston-modal resonant amplitude is decreased in an approximate power function. Within the scope of this work, the numerical investigations show that the piston-modal resonant frequency is hardly affected by the heaving amplitude.展开更多
文摘The Lagrangian equations of motion of small particle in turbulent boundary layer flows, taking into account the effects of the drug force caused by the wall presence, the Saffman and the Magus lift forces et al., is studied. Using the spectral method, analytical expression relating to the Lagrangian power spectra of particle velocity to that of the fluid are developed and the results are used to evaluate various responses statistics. In this paper, the results clearly show that the turbulent diffusivity of the particle may be larger than that of the fluid for a period of long-time.
文摘A new mathematical model, fluctuation spectrum random trajectory model (FSRTM) for the particle motion in environmental fluid was developed using Lagrangian method, in which the time mean velocity of the fluid was calculated by a time mean velocity formula for two dimensional homogeneous shear turbulent flows in open channel, the velocity fluctuation of the fluid was determined by Fourier expansion and fluctuation spectrum, and the particle motion equation was solved using Ronge Kutta method. For comparison, the spherical cation exchange resins with a density of 1 44 g/cm\+3 and diameters ranging from 0 50—0 60 mm, 0 60—0 70 mm and 0 80—0 90 mm were selected as the experimental solid particles, and their moving velocities and trajectories in shear turbulent flows with the flow Reynolds number of 4710, 10240, 11900 and 20760 were investigated. The comparing analyses of the modeled results with the measured results have shown that the model developed in this paper can describe the motions of the particles in shear turbulent flow.
文摘This paper presents a new numerical method to simulate the high velocity turbulent flow with free surface by solving two-dimensional incompressible unsteady Navier-Stokes Eqs. , together with the k-ε turbulence model. In order to treat the non-rectangular boundary (or curvilinear boundary), orthogonal boundary-fitted grid is used and the Navier-Stokes Eqs. and k-ε turbulence model are rewritten and discreted in orthogonal curvilinear coordinates. Meanwhile, gas-liquid two-field model theory is introduced to treat the free-surface problem.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51490673, 51679035)supported by the Pre-research field Fund Project of the Central Military Commission of China (Grant No. 61402070201), the Fundamental Research Funds for the Central Universities (Grant No. DUT18LK09, DUT2017TB05). The authors grate-fully acknowledge the Supercomputer Center of Dalian University of Technology for providing computing resources.
文摘The renormalization group (RNG) turbulent model is used to investigate the fluid resonance in a moonpool formed by two identical rectangular hulls under synchronous heaving excitation (e.g., a catamaran or dual pontoon). The numerical model is validated against the available experimental data, and accurate numerical solutions are obtained. The present study focuses on the amplitude of the moving hulls and the edge configuration of the moonpool entrance, as well as their influences on the piston-modal resonant wave in the moonpool. The dependence of the resonant wave amplitude in the moonpool on the heaving amplitude, the characteristic moonpool dimensions and the local velocity magnitude is derived based on a theoretical analysis, and the results are in good agreement with the RNG turbulent solutions. Five different edge profiles are considered, including two convex edges, two concave edges (both with various dimensions), and a sharp edge. Numerical examinations show that the edge configuration has a significant influence on the piston-modal resonant responses, a larger opening size leading to a higher resonant frequency and a larger resonant wave amplitude in the moonpool. Various flow patterns of the piston-modal resonance in the vicinity of the moonpool entrance are also identified, mainly depending on the edge profile. More intensive turbulent and vortical flows give rise to more significant dissipation, accounting for the smaller relative wave amplitude in the moonpool. With the increase of the heaving amplitude, the relative piston-modal resonant amplitude is decreased in an approximate power function. Within the scope of this work, the numerical investigations show that the piston-modal resonant frequency is hardly affected by the heaving amplitude.