A computational fluid dynamics study of three-phase counter-current fluidization occurring in a turbu- lent contact absorber was performed. A two-dimensional, transient Eulerian multi-fluid model was used, in which th...A computational fluid dynamics study of three-phase counter-current fluidization occurring in a turbu- lent contact absorber was performed. A two-dimensional, transient Eulerian multi-fluid model was used, in which the dispersed solid phase was modeled employing a kinetic theory of granular flow. The grid independence of the model, the effect of wall boundary conditions, the choice of granular temperature model, the effects of order of discretization scheme and drag models were studied for a base case setting, The results of simulations were validated against experimental results obtained from the literature. Once the model settings were finalized, simulations were performed for different gas and liquid velocities to predict the hydrodynamics of the absorber. Computed bed expansion and pressure drop were compared with experimental data. Good agreement between the two was found for low velocities of gas and liquid.展开更多
引言全球温度逐步上升已经是个不容否认的事实[1],政府间气候变化专门委员会(IPCC,intergovernmental panel on climate change)《2007年气候变化报告》[2]指出温室效应主要是人类活动造成,而且化石燃料燃烧排放的CO2对温室效应贡献率达...引言全球温度逐步上升已经是个不容否认的事实[1],政府间气候变化专门委员会(IPCC,intergovernmental panel on climate change)《2007年气候变化报告》[2]指出温室效应主要是人类活动造成,而且化石燃料燃烧排放的CO2对温室效应贡献率达到56.5%。展开更多
文摘A computational fluid dynamics study of three-phase counter-current fluidization occurring in a turbu- lent contact absorber was performed. A two-dimensional, transient Eulerian multi-fluid model was used, in which the dispersed solid phase was modeled employing a kinetic theory of granular flow. The grid independence of the model, the effect of wall boundary conditions, the choice of granular temperature model, the effects of order of discretization scheme and drag models were studied for a base case setting, The results of simulations were validated against experimental results obtained from the literature. Once the model settings were finalized, simulations were performed for different gas and liquid velocities to predict the hydrodynamics of the absorber. Computed bed expansion and pressure drop were compared with experimental data. Good agreement between the two was found for low velocities of gas and liquid.