期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The Turbulent Schmidt Number for Transient Contaminant Dispersion in a Large Ventilated Room Using a Realizable k-εModel
1
作者 Fei Wang Qinpeng Meng +3 位作者 Jinchi Zhao Xin Wang Yuhong Liu Qianru Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第4期829-846,共18页
Buildings with large open spaces in which chemicals are handled are often exposed to the risk of explosions.Computational fluid dynamics is a useful and convenient way to investigate contaminant dispersion in such lar... Buildings with large open spaces in which chemicals are handled are often exposed to the risk of explosions.Computational fluid dynamics is a useful and convenient way to investigate contaminant dispersion in such large spaces.The turbulent Schmidt number(Sc_(t))concept has typically been used in this regard,and most studies have adopted a default value.We studied the concentration distribution for sulfur hexafluoride(SF_(6))assuming different emission rates and considering the effect of Sc_(t).Then we examined the same problem for a light gas by assuming hydrogen gas(H_(2))as the contaminant.When SF_(6) was considered as the contaminant gas,a variation in the emission rate completely changed the concentration distribution.When the emission rate was low,the gravitational effect did not take place.For both low and high emission rates,an increase in S_(ct) accelerated the transport rate of SF_(6).In contrast,for H_(2) as the contaminant gas,a larger S_(ct) could induce a decrease in the H_(2) transport rate. 展开更多
关键词 Large space CFD turbulent schmidt number contaminant dispersion emission rate
下载PDF
Numerical Investigations on the Impact of Turbulent Prandtl Number and Schmidt Number on Supersonic Combustion 被引量:2
2
作者 Yongkang Zheng Chao Yan 《Fluid Dynamics & Materials Processing》 EI 2020年第3期637-650,共14页
The flow field inside the combustor of a scramjet is highly complicated and the related turbulent Prandtl and Schmidt numbers have a significant impact on the effective numerical prediction of such dynamics.As in many... The flow field inside the combustor of a scramjet is highly complicated and the related turbulent Prandtl and Schmidt numbers have a significant impact on the effective numerical prediction of such dynamics.As in many cases researchers set these parameters on the basis of purely empirical laws,assessing their impact(via parametric numerical simulations)is a subject of great importance.In the present work,in particular,two test cases with different characteristics are selected for further evaluation of the role played by these non-dimensional numbers:Burrows-Kurkov case and DLR case.The numerical results indicate that these parameters influence ignition location.Moreover,the temperature distribution is more sensitive to them than to H2O mass fraction and velocity distributions. 展开更多
关键词 turbulent Prandtl number turbulent schmidt number ignition position supersonic combustion
下载PDF
Influence of Turbulence Schmidt Number on Exit Temperature Distribution of an Annular Gas Turbine Combustor using Flamelet Generated Manifold
3
作者 WANG Weihao YANG Songlin +1 位作者 GAO Chuang HUANG Weiguang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第1期58-68,共11页
The Reynolds analogy concept has been used in almost all turbulent reacting flow RANS(Reynoldsaveraged Navier–Stokes)simulations,where the turbulence scalar transfers in flow fields are calculated based on the modele... The Reynolds analogy concept has been used in almost all turbulent reacting flow RANS(Reynoldsaveraged Navier–Stokes)simulations,where the turbulence scalar transfers in flow fields are calculated based on the modeled turbulence momentum transfer.This concept,applied to a lean premixed combustion system,was assessed in this paper in terms of exit temperature distribution.Because of the isotropic assumption involved in this analogy,the prediction in some flow condition,such as jet cross flow mixing,would be inaccurate.In this study,using Flamelet Generated Manifold as reaction model,some of the numerical results,obtained from an annular combustor configuration with the turbulent Schmidt number varying from 0.85 to 0.2,were presented and compared with a benchmark atmospheric test results.It was found that the Schmidt numberσt in mean mass fraction f transport equation had significant effect on dilution air mixing process.The mixing between dilution air and reaction products from the primary zone obviously improved asσt decreased on the combustor exit surface.Meanwhile,the sensitivity ofσt in three turbulence models including Realizable k-ε,SST(Shear Stress Transport)and RSM(Reynolds Stress Model)has been compared as well.Since the calculation method of eddy viscosity was different within these three models,RSM was proved to be less sensitive than another two models and can guarantee the best prediction of mixing process condition.On the other hand,the results of dilution air mixing were almost independent of Schmidt number Sct in progress variable c transport equation.This study suggested that for accurate prediction of combustor exit temperature distribution in steady state reacting flow simulation,the turbulent Schmidt number in steady state simulation should be modified to cater to dilution air mixing process. 展开更多
关键词 gas turbine combustor flamelet-generated manifold turbulent schmidt number Reynolds Stress Model Reynolds analogy
原文传递
Construction and Validation of an Urban Area Flow and Dispersion Model on Building Scales 被引量:2
4
作者 陈笔澄 刘树华 +2 位作者 缪育聪 王姝 李源 《Acta meteorologica Sinica》 SCIE 2013年第6期923-941,共19页
This paper presents a numerical model that simulates the wind fields, turbulence fields, and dispersion of gaseous substances in urban areas on building to city block scales. A Computational Fluid Dynamics(CFD) appr... This paper presents a numerical model that simulates the wind fields, turbulence fields, and dispersion of gaseous substances in urban areas on building to city block scales. A Computational Fluid Dynamics(CFD) approach using the steady-state, Reynolds-Averaged Navier-Stokes(RANS) equations with the standard k-ε turbulence model within control volumes of non-uniform cuboid shapes has been employed. Dispersion field is computed by solving an unsteady transport equation of passive scalar. Another approach based on Gaussian plume model is used to correct the turbulent Schmidt number of tracer, in order to improve the dispersion simulation. The experimental data from a wind tunnel under neutral conditions are used to validate the numerical results of velocity, turbulence, and dispersion fields. The numerical results show a reasonable agreement with the wind tunnel data. The deviation of concentration between the simulation with corrected turbulent Schmidt number and the wind tunnel experiments may arise from 1) imperfect point sources, 2) heterogeneous turbulent difusivity, and 3) the constant turbulent Schmidt assumption used in the model. 展开更多
关键词 urban areas flow and dispersion computational fluid dynamics RANS equation k-ε model turbulent schmidt number
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部