期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Observing the air-sea turbulent heat flux on the trajectory of tropical storm Danas
1
作者 Xuehan XIE Xiangzhou SONG +3 位作者 Marilena OLTMANNS Yangang LI Qifeng QIAN Zexun WEI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第5期1425-1437,共13页
Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of t... Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of turbulent heat flux(THF).By combining multiple buoy observations along the south north storm track,we investigated the THF anomalies associated with tropical storm Danas(2019)in the East China Sea(ECS)during its complete life cycle from the intensification stage to the mature stage and finally to its dissipation on land.The storm passage is characterized by strong winds of 10-20 m/s and a sea level pressure below 1000 hPa,resulting in a substantial enhancement of THF.Latent heat(LH)fluxes are most strongly affected by wind speed,with a gradually increasing contribution of humidity along the trajectory.The relative contributions of wind speed and temperature anomalies to sensible heat(SH)depend on the stability of the boundary layer.Under stable conditions,SH variations are driven by wind speed,while under near-neutral conditions,SH variations are driven by temperature.A comparison of the observed THF and associated variables with outputs from the ERA 5 and MERRA 2 reanalysis products reveals that the reanalysis products can reproduce the basic evolution and composition of the observed THF.However,under extreme weather conditions,temperature and humidity variations are poorly captured by ERA 5 and MERRA 2,leading to large LH and SH errors.The differences in the observed and reproduced LH and SH during the passage of Danas amount to 26.1 and 6.6 W/m^(2) for ERA 5,respectively,and to 39.4 and 12.5 W/m^(2) for MERRA 2,respectively.These results demonstrate the need to improve the representation of tropical cyclones in reanalysis products to better predict their intensification process and reduce their damage. 展开更多
关键词 tropical cyclone(TC) air-sea turbulent heat flux(THF) latent heat flux sensible heat flux buoy observation reanalysis product
下载PDF
Current trends and future directions in turbulent thermal convection 被引量:10
2
作者 Ke-Qing Xia 《Theoretical & Applied Mechanics Letters》 CAS 2013年第5期1-12,共12页
The system of turbulent thermal convection is introduced. Progresses in recent decades in the four major areas of research in turbulent convection are briefly reviewed. Some of the recent trends of the field are then ... The system of turbulent thermal convection is introduced. Progresses in recent decades in the four major areas of research in turbulent convection are briefly reviewed. Some of the recent trends of the field are then discussed, which also serve to point out that the future directions in this important field of fluid mechanics lie in the extension to the non-standard or non-classical Rayleigh-Bénard configuration. 展开更多
关键词 TURBULENCE thermal convection turbulent heat transport thermal plumes large-scaleflow small-scale turbulence
下载PDF
Evaluation of monthly turbulent heat fluxes from WHOI analysis and NCEP reanalysis in the tropical Atlantic 被引量:2
3
作者 JIANG Hua WANG Hui WU Dexing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2005年第5期14-26,共13页
The biases and their sources in monthly turbulent heat fluxes from the Woods Hole Oceanographic Institution (WHOI) analysis, and the National Centers for Environmental Prediction-National Center for Atmospheric Rese... The biases and their sources in monthly turbulent heat fluxes from the Woods Hole Oceanographic Institution (WHOI) analysis, and the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalyses 1 and 2 (NCEPI and NCEP2) are checked in the climatically representative regions in the tropical Atlantic using the fluxes from the Southampton Oceanographic Centre (SOC) and the pilot research moored array in the tropical Atlantic (PIRATA) as references. For the WHOI analysis, the biases in turbulent heat fluxes mainly exist in equatorial regions which are due to the overestimated sea surface temperature and the underestimated 2 m air humidity. For the NCEP2 reanalysis, the maximum biases, about (40±5) W/m^2, exist in southeast and northeast trade wind regions, which are mainly caused by the flux algorithm used because the biases in wind speed and air-sea humidity difference are relatively small. In the equatorial regions, the flux biases in the NCEP2 derived from both flux-related basic variables and algorithm are equally large. Although the estimations of time series trends and air-sea humidity difference of the NCEPI are improved greatly in the NCEP2, the biases of latent heat flux in the NCEP2 are about 20 W/m^2 greater than those from the NCEP1 in the trade wind regions. The result shows that the climatologies and monthly variabilities of the turbulent heat fluxes from the WHOI are more accurate than those from the NCEP1 and NCEP2 in the tropical Atlantic, especially on outside of the equatorial regions. 展开更多
关键词 turbulent heat fluxes EVALUATION the tropical Atlantic
下载PDF
Heat transport mechanisms of low Mach number turbulent channel flow with spanwise wall oscillation 被引量:2
4
作者 Jian Fang Li-Peng Lu Liang Shao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第3期391-399,共9页
Large eddy simulation (LES) of low Mach num- ber compressible turbulent channel flow with spanwise wall oscillation (SWO) is carried out. The flow field is analyzed with emphases laid on the heat transport as well... Large eddy simulation (LES) of low Mach num- ber compressible turbulent channel flow with spanwise wall oscillation (SWO) is carried out. The flow field is analyzed with emphases laid on the heat transport as well as its rela- tion with momentum transport. When turbulent coherent structures are suppressed by SWO, the turbulent transports are significantly changed, however the momentum and heat transports change in the same manner, which gives the evi- dence of inherently consistent transport mechanisms between momentum and heat in turbulent boundary layers. The Reynolds analogies of all the flow cases are quite good, which confirms again the fact that the transport mechanisms of momentum and heat are consistent, which gives theoreti- cal support for controlling the wall heat flux control by using the drag reducing techniques. 展开更多
关键词 Large eddy simulation turbulent heat transport Wall heat fluxSpanwise wall oscillation
下载PDF
The Local Atmosphere and the Turbulent Heat Transfer in the Eastern Himalayas 被引量:1
5
作者 邹捍 李鹏 +2 位作者 马舒坡 周立波 朱金焕 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第3期435-440,共6页
To understand the local atmosphere and heat transfer and to facilitate the boundary-layer parameterization of numerical simulation and prediction, an observational campaign was conducted in the Eastern Himalayas in Ju... To understand the local atmosphere and heat transfer and to facilitate the boundary-layer parameterization of numerical simulation and prediction, an observational campaign was conducted in the Eastern Himalayas in June 2010. The local atmospheric properties and near-surface turbulent heat transfers were analyzed. The local atmosphere in this region is warmer, more humid and less windy, with weaker solar ra- diation and surface radiate heating than in the Middle Himalayas. The near-surface turbulent heat transfer in the Eastern Himalayas is weaker than that in the Middle Himalayas. The total heat transfer is mainly contributed by the latent heat transfer with a Bowen ratio of 0.36, which is essentially different from that in the Middle Himalayas and the other Tibetan regions. 展开更多
关键词 local atmosphere turbulent heat transfer Eastern Himalayas Tibetan Plateau
下载PDF
Seasonal variability of turbulent heat fluxes in the tropical Atlantic Ocean based on WHOI flux product 被引量:1
6
作者 JIANG Hua WANG Hui WU Dexing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2007年第5期1-11,共11页
The mean seasonal variability of turbulent heat fluxes in the tropical Atlantic Ocean is examined using the Woods Hole Oceanographic Institution (WHOI) flux product. The most turbulent heat fluxes occur during winte... The mean seasonal variability of turbulent heat fluxes in the tropical Atlantic Ocean is examined using the Woods Hole Oceanographic Institution (WHOI) flux product. The most turbulent heat fluxes occur during winter seasons in the two hemispheres, whose centers are located at 10° -20°N and 5° 15°S respectively. In climatological ITCZ, the turbulent heat fluxes are the greatest from June to August, and in equatorial cold tongue the turbulent heat fluxes are the greatest from March to May. Seasonal variability of sensible heat flux is smaller than that of latent heat flux and mainly is dominated by the variations of air-sea temperature difference. In the region with larger climatological mean wind speed (air-sea humidity difference), the variations of air-sea humidity difference (wind speed) dominate the variability of latent heat flux. The characteristics of turbulent heat flux yielded from theory analysis and WHOI dataset is consistent in physics which turns out that WHOI' s flux data are pretty reliable in the tropical Atlantic Ocean. 展开更多
关键词 turbulent heat fluxes seasonal variation tropical Atlantic
下载PDF
Effect of Counter-Gradient in the Computation of Turbulent Fluxes of Heat and Moisture in a Regional Model 被引量:2
7
作者 S. S. Vaidya V. N. Lykossov S. S. Singh 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1993年第1期85-94,共10页
The counter-gradient terms in the computations of turbulent fluxes of heat and moisture have been included in the PBL parameterization of a regional model for monsoon prediction. Results show that inclusion of counter... The counter-gradient terms in the computations of turbulent fluxes of heat and moisture have been included in the PBL parameterization of a regional model for monsoon prediction. Results show that inclusion of counter-gradient terms has a marginal impact in the prediction of large scale monsoon circulation and rainfall rates. 展开更多
关键词 Effect of Counter-Gradient in the Computation of turbulent Fluxes of Heat and Moisture in a Regional Model
下载PDF
Near ground air temperature calculation model based on heat transfer of vertical turbulent and horizontal air flow
8
作者 张磊 孟庆林 《Journal of Central South University》 SCIE EI CAS 2012年第3期721-726,共6页
In order to calculate the air temperature of the near surface layer in urban environment,the surface layer air was divided into several sections in the vertical direction,and some energy balance equations were develop... In order to calculate the air temperature of the near surface layer in urban environment,the surface layer air was divided into several sections in the vertical direction,and some energy balance equations were developed for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was taken into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area(with a horizontal scale of less than 500 m) and a large area(with a horizontal scale of more than 1 000 m) in Guangzhou in summer were used to validate the proposed model.The calculated results accord well with the measured ones,with a maximum relative error of 4.18%.It is thus concluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment. 展开更多
关键词 turbulent heat exchange urban thermal environment near surface layer air temperature calculation model
下载PDF
Estimations of Land Surface Characteristic Parameters and Turbulent Heat Fluxes over the Tibetan Plateau Based on FY-4A/AGRI Data
9
作者 Nan GE Lei ZHONG +5 位作者 Yaoming MA Yunfei FU Mijun ZOU Meilin CHENG Xian WANG Ziyu HUANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第8期1299-1314,共16页
Accurate estimates of land surface characteristic parameters and turbulent heat fluxes play an important role in the understanding of land-atmosphere interaction. In this study, Fengyun-4A (FY-4A) Advanced Geostationa... Accurate estimates of land surface characteristic parameters and turbulent heat fluxes play an important role in the understanding of land-atmosphere interaction. In this study, Fengyun-4A (FY-4A) Advanced Geostationary Radiation Imager (AGRI) satellite data and the China Land Data Assimilation System (CLDAS) meteorological forcing dataset CLDAS-V2.0 were applied for the retrieval of broadband albedo, land surface temperature (LST), radiation flux components, and turbulent heat fluxes over the Tibetan Plateau (TP). The FY-4A/AGRI and CLDAS-V2.0 data from 12 March 2018 to 30 April 2018 were first used to estimate the hourly turbulent heat fluxes over the TP. The time series data of in-situ measurements from the Tibetan Observation and Research Platform were divided into two halves-one for developing retrieval algorithms for broadband albedo and LST based on FY-4A, and the other for the cross validation. Results show the root-mean-square errors (RMSEs) of the FY-4A retrieved broadband albedo and LST were 0.0309 and 3.85 K, respectively, which verifies the applicability of the retrieval method. The RMSEs of the downwelling/upwelling shortwave radiation flux and downwelling/upwelling longwave radiation flux were 138.87/32.78 W m^(−2) and 51.55/17.92 W m^(−2), respectively, and the RMSEs of net radiation flux, sensible heat flux, and latent heat flux were 58.88 W m^(−2), 82.56 W m^(−2) and 72.46 W m^(−2), respectively. The spatial distributions and diurnal variations of LST and turbulent heat fluxes were further analyzed in detail. 展开更多
关键词 FY-4A/AGRI land surface characteristic parameters turbulent heat fluxes Surface Energy Balance System model Tibetan Plateau
下载PDF
Positive and negative turbulent heat diffusivity observed on a 325-m meteorological tower in Beijing
10
作者 Zhe Zhang Yu Shi +2 位作者 Haijion Sun Lei Liu Fei Hu 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第1期52-56,共5页
Turbulent diffusion efficiently transports momentum,heat,and matter and affects their transfers between the atmosphere and the surface.As a key parameter in describing turbulent diffusion,the turbulent heat diffusivit... Turbulent diffusion efficiently transports momentum,heat,and matter and affects their transfers between the atmosphere and the surface.As a key parameter in describing turbulent diffusion,the turbulent heat diffusivity KH has rarely been studied in the context of frequent urban pollution in recent years.In this study,KH under urban pollution conditions was directly calculated based on K-theory.The authors found an obvious diurnal variation in K_(H),with variations also in the vertical distributions between each case and over time.Interestingly,the height corresponding to the high occurrence frequency of negative K_(H) rises gradually after sunrise,peaks at noon,falls near sunset,and concentrates around 140 m during most of the night.The KH magnitude and fluctuation are smaller in the pollutant accumulation stage(CS)at all levels than in the pollutant transport stage and pollutant removal stage.Turbulent diffusion may greatly affect PM_(2.5) concentrations at the CS because of the negative correlation between PM_(2.5) concentrations and the absolute value of KH at the CS accompanied by weak wind speeds.The applicability of K-theory is not very good during either day or at night.These problems are inherent in K-theory when characterizing complex systems,such as turbulent diffusion,and require new frameworks or parameterization schemes.These findings may provide valuable insight for establishing a new turbulence diffusion parameterization scheme for KH and promote the study of turbulent diffusion,air quality forecasting,and weather and climate modeling. 展开更多
关键词 turbulent heat diffusivity Counter gradient transportation Atmospheric boundary layer Urban pollution
下载PDF
Turbulent forced convection in a heat exchanger square channel with wavy-ribs vortex generator
11
作者 Amnart Boonloi Withada Jedsadaratanachai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第8期1256-1265,共10页
Turbulent forced convective heat transfer and flow con figurations in a square channel with wavy-ribs inserted diagonally are examined numerically. The in fluences of the 30° and 45° flow attack angles for w... Turbulent forced convective heat transfer and flow con figurations in a square channel with wavy-ribs inserted diagonally are examined numerically. The in fluences of the 30° and 45° flow attack angles for wavy-ribs, blockage ratio, R B= b/H = 0.05–0.25 with single pitch ratio, R P= P/H = 1 are investigated for the Reynolds number based on the hydraulic diameter of the square channel, Re = 3000–20000. The use of the wavy-ribs, which inserted diagonal in the square channel, is aimed to help to improve the thermal performance in heat exchange systems.The finite volume method and SIMPLE algorithm are applied to the present numerical simulation. The results are presented on the periodic flow and heat transfer pro files, flow con figurations, heat transfer characteristics and the performance evaluations. The mathematical results reveal that the use of wavy-ribs leads to a higher heat transfer rate and friction loss over the smooth channel. The heat transfer enhancements are around 1.97–5.14 and 2.04–5.27 times over the smooth channel for 30° and 45° attack angles, respectively. However, the corresponding friction loss values for 30° and 45° are around 4.26–86.55 and 5.03–97.98 times higher than the smooth square channel, respectively. The optimum thermal enhancement factor on both cases is found at R B= 0.10 and the lowest Reynolds number, Re = 3000, to be about 1.47 and 1.52, respectively, for 30° and 45° wavy-ribs. 展开更多
关键词 Flow configuration Forced convection Heat transfer characteristic turbulent flow Wavy-ribs
下载PDF
Horizontal convection in a rectangular enclosure driven by a linear temperature profile 被引量:1
12
作者 Tianyong YANG Bofu WANG +2 位作者 Jianzhao WU Zhiming LU Quan ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第8期1183-1190,共8页
The horizontal convection in a square enclosure driven by a linear temperature profile along the bottom boundary is investigated numerically by using a finite difference method.The Prandtl number is fixed at 4.38,and ... The horizontal convection in a square enclosure driven by a linear temperature profile along the bottom boundary is investigated numerically by using a finite difference method.The Prandtl number is fixed at 4.38,and the Rayleigh number Ra ranges from107 to 1011.The convective flow is steady at a relatively low Rayleigh number,and no thermal plume is observed,whereas it transits to be unsteady when the Rayleigh number increases beyond the critical value.The scaling law for the Nusselt number Nu changes from Rossby’s scaling Nu~Ra^(1/5)in a steady regime to Nu~Ra^(1/4)in an unsteady regime,which agrees well with the theoretically predicted results.Accordingly,the Reynolds number Re scaling varies from Re~Ra^(3/11)to Re~Ra^(2/5).The investigation on the mean flows shows that the thermal and kinetic boundary layer thickness and the mean temperature in the bulk zone decrease with the increasing Ra.The intensity of fluctuating velocity increases with the increasing Ra. 展开更多
关键词 horizontal convection linear temperature profile turbulent heat transfer boundary layer
下载PDF
A Sensitivity Study of Arctic Ice-Ocean Heat Exchange to the Three-Equation Boundary Condition Parametrization in CICE6 被引量:1
13
作者 Lei YU Jiping LIU +1 位作者 Yongqi GAO Qi SHU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第9期1398-1416,共19页
In this study,we perform a stand-alone sensitivity study using the Los Alamos Sea ice model version 6(CICE6)to investigate the model sensitivity to two Ice-Ocean(IO)boundary condition approaches.One is the two-equatio... In this study,we perform a stand-alone sensitivity study using the Los Alamos Sea ice model version 6(CICE6)to investigate the model sensitivity to two Ice-Ocean(IO)boundary condition approaches.One is the two-equation approach that treats the freezing temperature as a function of the ocean mixed layer(ML)salinity,using two equations to parametrize the IO heat exchanges.Another approach uses the salinity of the IO interface to define the actual freezing temperature,so an equation describing the salt flux at the IO interface is added to the two-equation approach,forming the so-called three-equation approach.We focus on the impact of the three-equation boundary condition on the IO heat exchange and associated basal melt/growth of the sea ice in the Arctic Ocean.Compared with the two-equation simulation,our three-equation simulation shows a reduced oceanic turbulent heat flux,weakened basal melt,increased ice thickness,and reduced sea surface temperature(SST)in the Arctic.These impacts occur mainly at the ice edge regions and manifest themselves in summer.Furthermore,in August,we observed a downward turbulent heat flux from the ice to the ocean ML in two of our three-equation sensitivity runs with a constant heat transfer coefficient(0.006),which caused heat divergence and congelation at the ice bottom.Additionally,the influence of different combinations of heat/salt transfer coefficients and thermal conductivity in the three-equation approach on the model simulated results is assessed.The results presented in this study can provide insight into sea ice model sensitivity to the three-equation IO boundary condition for coupling the CICE6 to climate models. 展开更多
关键词 Arctic ice-ocean heat exchange three-equation boundary condition reduced oceanic turbulent heat flux CICE6
下载PDF
Global Land Surface Climate Analysis Based on the Calculation of a Modified Bowen Ratio 被引量:1
14
作者 Bo HAN Shihua Lü +5 位作者 Ruiqing LI Xin WANG Lin ZHAO Cailing ZHAO Danyun WANG Xianhong MENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第5期663-678,共16页
A modified Bowen ratio(BRm),the sign of which is determined by the direction of the surface sensible heat flux,was used to represent the major divisions in climate across the globe,and the usefulness of this approach ... A modified Bowen ratio(BRm),the sign of which is determined by the direction of the surface sensible heat flux,was used to represent the major divisions in climate across the globe,and the usefulness of this approach was evaluated. Five reanalysis datasets and the results of an offline land surface model were investigated. We divided the global continents into five major BRm zones using the climatological means of the sensible and latent heat fluxes during the period 1980–2010:extremely cold,extremely wet,semi-wet,semi-arid and extremely arid. These zones had BRm ranges of(-∞,0),(0,0.5),(0.5,2),(2,10) and(10,+∞),respectively. The climatological mean distribution of the Bowen ratio zones corresponded well with the K ¨oppen-like climate classification,and it reflected well the seasonal variation for each subdivision of climate classification. The features of climate change over the mean climatological BRm zones were also investigated. In addition to giving a map-like classification of climate,the BRm also reflects temporal variations in different climatic zones based on land surface processes. An investigation of the coverage of the BRm zones showed that the extremely wet and extremely arid regions expanded,whereas a reduction in area was seen for the semi-wet and semi-arid regions in boreal spring during the period 1980–2010. This indicates that the arid regions may have become drier and the wet regions wetter over this period of time. 展开更多
关键词 climate classification surface turbulent heat flux climate change
下载PDF
An empirical study on vortex-generator insert fitted in tubular heat exchangers with dilute Cu–water nanofluid flow 被引量:3
15
作者 M. Khoshvaght-Aliabadi M.H. Akbari F. Hormozi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第6期728-736,共9页
The heat transfer enhancement(HTE) in tubular heat exchangers fitted with vortex-generator(VG) inserts is experimentally investigated. The studied four parameters and ranges are: winglets-pitch ratio(1.33, 2.67, and 4... The heat transfer enhancement(HTE) in tubular heat exchangers fitted with vortex-generator(VG) inserts is experimentally investigated. The studied four parameters and ranges are: winglets-pitch ratio(1.33, 2.67, and 4),winglets-length ratio(0.33, 0.67, and 1), winglets-width ratio(0.2, 0.4, and 0.6), and Reynolds number(5200to 12200). The testing fluids are the water and Cu–water nanofluid at the volumetric fraction of 0.2%. The results obtained on HTE, pressure drop, and performance evaluation criterion(PEC) are compared with those for water in a smooth tube. It is found that the VG inserts with lower winglets-pitch ratio and higher winglets-length/width ratios present higher values of HTE and pressure drop. Over the range studied, the maximum PEC of 1.83 is detected with the Cu–water nanofluid inside the tube equipped with a VG insert at the winglets-width ratio of0.6 for the maximum Reynolds number, when the heat transfer rate and pressure drop are 1.24 times and 2.03 times of those in the smooth tube. Generalized regression equations of the Nusselt number, friction factor, and PEC are presented for the tubular heat exchangers with the VG inserts for both water and Cu–water nanofluid.It is concluded that the main advantage of the VG inserts is their simple fabrication and considerable performance, particularly at higher Reynolds number. 展开更多
关键词 Heat transfer enhancementVortex-generator insertNanofluid turbulent flowCorrelation
下载PDF
Enhancing heat transfer at the micro-scale using elastic turbulence 被引量:2
16
作者 R.D.Whalley W.M.Abed +1 位作者 D.J.C.Dennis R.J.Poole 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2015年第3期103-106,共4页
Small concentrations of a high-molecular-weight polymer have been used to create so-called "elastic tur- bulence" in a micro-scale serpentine channel geometry. It is known that the interaction of large elastic stres... Small concentrations of a high-molecular-weight polymer have been used to create so-called "elastic tur- bulence" in a micro-scale serpentine channel geometry. It is known that the interaction of large elastic stresses created by the shearing motion within the fluid flow with streamline curvature of the serpentine geometry leads initially to a purely-elastic instability and then the generation of elastic turbulence. We show that this elastic turbulence enhances the heat transfer at the micro-scale in this geometry by up to 300% under creeping flow conditions in comparison to that achieved by the equivalent Newtonian fluid flow. 展开更多
关键词 Elastic turbulence Viscoelasticity Serpentine channel Micro-mixing Heat transfer
下载PDF
Coastal buoy observation of air-sea net heat flux in the East China Sea in summer 2020
17
作者 Yuting HAN Yangang LI +4 位作者 Changsan XU Lei LIU Yanling ZHAO Wenqing LI Xiangzhou SONG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2022年第3期907-921,共15页
The full fluxes and associated air-sea variables based on three months of operational buoy observations in the East China Sea(ECS)in summer 2020 were analyzed for the first time.The surface net heat flux(Q_(net))was p... The full fluxes and associated air-sea variables based on three months of operational buoy observations in the East China Sea(ECS)in summer 2020 were analyzed for the first time.The surface net heat flux(Q_(net))was positive(139.7±77.7 W/m^(2))and was dominated by the combined eff ects of solar shortwave radiation(SW)and latent heat fluxes(LH).The mean heat flux components of 4 reanalysis datasets(NCEP2,MERRA-2,CFSR,and ERA5)and buoy data were compared to assess the mean ability of the modeling/reanalysis simulation.Among the four components of air-sea flux,SW was the best simulated,while LH was the worst simulated.The longwave radiation(LW)and LH values from reanalysis were higher than those from buoy data,especially LH.The high LH resulted in low Q_(net).Furthermore,the 4 reanalysis datasets were compared with the buoy dataset.Among all flux products,the difference in radiation flux was the smallest,while that in the turbulent flux was the greatest.The observed variables related to turbulent flux were analyzed to help determine the cause of the flux discrepancies.High wind speeds were the main cause of this difference.Using the variables provided by the reanalysis data and the same bulk formulas of the Coupled Ocean-Atmospheric Response Experiment(COARE 3.0),we found that the recalculated sensible heat flux(SH)and LH were closer to the observed heat fluxes than the direct model outputs.The signifi cant diff erences between these methods could account for the discrepancies among diff erent data.Among all air-sea flux products,the air-sea flux in ERA5 was closer to the in-situ observations than the other products.The comparison results of reanalysis data provide an important reference for more accurate studies of the summer heat flux in the ECS at the synoptic and climatic scales. 展开更多
关键词 buoy observations East China Sea air-sea turbulent heat flux radiative flux REANALYSIS
下载PDF
Possible contribution of Arctic sea ice decline to intense warming over Siberia in June
18
作者 Ying Zhang Mengqi Zhang +2 位作者 Jiehua Ma Dong Chen Tao Wang 《Atmospheric and Oceanic Science Letters》 CSCD 2022年第2期59-64,共6页
Siberia experienced intense heat waves in 2020,and this unusual warming may have caused more wildfires and losses of permafrost than normal,both of which can be devastating to ecosystems.Based on observational data,th... Siberia experienced intense heat waves in 2020,and this unusual warming may have caused more wildfires and losses of permafrost than normal,both of which can be devastating to ecosystems.Based on observational data,this paper shows that there was an intense warming trend over Siberia(60°–75°N,70°–130°E)in June during 1979–2020.The linear trend of the June surface air temperature is 0.90℃/10 yr over Siberia,which is much larger than the area with the same latitudes(60°–75°N,0°–360°,trend of 0.46℃/10 yr).The warming over Siberia extends from the surface to about 300 h Pa.Increased geopotential height in the mid-to-upper troposphere plays an important role in shaping the Siberian warming,which favors more shortwave radiation reaching the surface and further heating the overlying atmosphere via upward turbulent heat flux and longwave radiation.The Siberian warming is closely related to Arctic sea-ice decline,especially the sea ice over northern Barents Sea and Kara Sea.Numerical experiments carried out using and atmospheric general circulation model(IAP-AGCM4.1)confirmed the contribution of the Arctic sea-ice decline to the Siberian warming and the related changes in circulations and surface fluxes. 展开更多
关键词 Intense Siberian warming Arctic sea ice decline Surface radiation flux turbulent heat flux
下载PDF
Turbulent heat fluxes in the North Water Polynya and ice estimated based on ASRv2 data and their impact on cloud
19
作者 Hai-Yi REN Mohammed SHOKR +3 位作者 Tian-Yu ZHANG Zhi-Lun ZHANG Feng-Ming HUI Xiao CHENG 《Advances in Climate Change Research》 SCIE CSCD 2024年第5期798-814,共17页
The presence or absence of sea ice introduces a substantial perturbation to surface-atmosphere energy exchanges.Comprehending the effect of varying sea ice cover on surface-atmosphere interactions is an important cons... The presence or absence of sea ice introduces a substantial perturbation to surface-atmosphere energy exchanges.Comprehending the effect of varying sea ice cover on surface-atmosphere interactions is an important consideration for understanding the Arctic climate system.The recurring North Water Polynya(NOW)serves as a natural laboratory for isolating cloud responses to a rapid,near-step perturbation in sea ice.In this study,we employed high-resolution Arctic System Reanalysis version 2(ASRv2)data to estimate turbulent heat fluxes over the NOW and nearby sea ice(NSI)area between 2005/2006 and 2015/2016.The results indicate that the average turbulent heat fluxes in the polynya are about 87%and 86%higher than in the NSI area over the 10 years during the entire duration of the polynya and during polar night,respectively.Enhanced turbulent heat fluxes from the polynya tend to produce more low-level clouds.The relationship between the polynya and low cloud in winter was examined based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations(CALIPSO).The low-cloud fraction(0-2 km)was about 7%-34%larger over the polynya than the NSI area,and the ice water content below 200 m was about 250%-413%higher over the former than the latter.The correlation between cloud fraction and turbulent heat fluxes in the polynya peaks around the altitude of 200-300 m.These results suggest that the NOW affects the Arctic boundary layer cloudiness and structure in wintertime.Furthermore,higher horizontal resolution reanalysis data can advance our understanding of the cloud-polynya response. 展开更多
关键词 The North Water Polynya turbulent heat fluxes Cloud cover Ice water content ASRv2 CALIPSO
原文传递
STUDY ON CLIMATIC FEATURES OF SURFACE TURBULENT HEAT EXCHANGE COEFFICIENTS AND SURFACE THERMAL SOURCES OVER THE QINGHAI-XIZANG PLATEAU 被引量:19
20
作者 赵平 陈隆勋 《Acta meteorologica Sinica》 SCIE 2000年第1期13-29,共17页
Using monthly mean of surface turbulent heat exchange coefficients calculated based on data from four automatic weather stations(AWS)for thermal equilibrium observation in July 1993— September 1996 and of surface con... Using monthly mean of surface turbulent heat exchange coefficients calculated based on data from four automatic weather stations(AWS)for thermal equilibrium observation in July 1993— September 1996 and of surface conventional measurements,an empirical expression is established for such coefficients.With the expression,the heat exchange coefficients and the components of surface thermal source are computed in terms of 1961—1990 monthly mean conventional data from 148 stations over the Qinghai-Xizang(Tibetan)Plateau(QXP)and its adjoining areas,and the 1961—1990 climatic means are examined. Evidence suggests that the empirical expression is capable of showing the variation of the heat exchange coefficient in a climatic context.The monthly variation of the coefficients averaged over the QXP is in a range of 4×10^(-3)-5×10^(-3).The wintertime values are bigger in the mountains than in the valleys and reversal in summer.Surface effective radiation and sensible heat are the dominant factors of surface total heat.In spring surface sensible heat is enhanced quickly, resulting in two innegligible regions of sensible heat,one in the west QXP and the other in northern Tibet.with their maximums emerging in different months.In spring and summer sensible heat and surface effective radiation are higher in the west than in the east.The effective radiation peaks for the east in October—December and the whole QXP and in June and October for the west.The surface total heat of the plateau maximizes in May.minimizes in December and January,and shows seasonal variation more remarkable in the SW compared to the eastern part.In the SW plateau the total heat is much more intense than the eastern counterpart in all the seasons except winter.Under the effect of the sensible heat,the total heat on the SW plateau starts to considerably intensify in February,which leads to a predominant heating region in the west,with its center experiencing a noticeable westward migration early in summer and twice pronounced weakening in July and after October.However,the weakening courses are owing to different causes.The total heat over the north of QXP is greatly strengthened in March.thus generating another significant thermal region in the plateau. 展开更多
关键词 Qinghai-Xizang(Tibetan)Plateau surface turbulent heat exchange coefficient surface thermal source climatic feature
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部