期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Numerical simulation of the pulsing air separation field based on CFD 被引量:12
1
作者 He Jingfeng He Yaqun +2 位作者 Zhao Yuemin Duan Chenlong Ye Cuiling 《International Journal of Mining Science and Technology》 2012年第2期201-207,共7页
The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which sh... The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which shows a remarkable variation of the unstable pulsing air flow field.CFD(computational fluid dynamics) was used to conduct the numerical simulation of the actual geometric model of the classifier.The inside velocity of the flowing fields was analyzed later.The simulation results indicate that the designed structure of the active pulsing air classifier provided a favorable environment for the separation of the particles with different physical characters by density.We shot the movement behaviors of the typical tracer grains in the active pulsing flow field using a high speed dynamic camera.The displacement and velocity curves of the particles in the continuous impulse periods were then analyzed.The experimental results indicate that the effective separation by density of the particles with the same settling velocity and different ranges of the density and particle size can be achieved in the active pulsing airflow field.The experimental results provide an agreement with the simulation results. 展开更多
关键词 Pulsing air separation flow fieldMultiphase turbulence flowNumerical simulationHigh-speed dynamic camera imaging
下载PDF
A study on coherent structures and drag-reduction in the wall turbulence with polymer additives by TRPIV 被引量:4
2
作者 Xin-Lei Guan Shi-Yong Yao Nan Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第4期485-493,共9页
An experimental measurement was performed us- ing time-resolved particle image velocimetry (TRPIV) to in- vestigate the spatial topological character of coherent struc- tures in wall-bounded turbulence of polymer ad... An experimental measurement was performed us- ing time-resolved particle image velocimetry (TRPIV) to in- vestigate the spatial topological character of coherent struc- tures in wall-bounded turbulence of polymer additive solu- tion. The fully developed near-wall turbulent flow fields with and without polymer additives at the same Reynolds number were measured by TRPIV in a water channel. The compar- isons of turbulent statistics confirm that due to viscoelastic structure of long-chain polymers, the wall-normal velocity fluctuation and Reynolds shear stress in the near-wall region are suppressed significantly. Furthermore, it is noted that such a behavior of polymers is closely related to the decease of the motion of the second and forth quadrants, i.e., the ejection and sweep events, in the near-wall region. The spa- tial topological mode of coherent structures during bursts has been extracted by the new mu-level criteria based on locally averaged velocity structure function. Although the general shapes of coherent structures are unchanged by polymer additives, the fluctuating velocity, velocity gradient, velocity strain rate and vorticity of coherent structures during burst events are suppressed in the polymer additive solution com- pared with that in water. The results show that due to the polymer additives the occurrence and intensity of coherent structures are suppressed, leading to drag reduction. 展开更多
关键词 Time-resolved particle image velocimetry ~ Wall-bounded turbulence ~ Coherent structures ~ Polymer addi-tives ~ Drag reduction
下载PDF
Real-Time Underwater Image Enhancement Using Adaptive Full-Scale Retinex
3
作者 徐兴贵 樊香所 刘永利 《Journal of Computer Science & Technology》 SCIE EI CSCD 2023年第4期885-898,共14页
Current Retinex-based image enhancement methods with fixed scale filters cannot adapt to situations involving various depths of field and illuminations.In this paper,a simple but effective method based on adaptive ful... Current Retinex-based image enhancement methods with fixed scale filters cannot adapt to situations involving various depths of field and illuminations.In this paper,a simple but effective method based on adaptive full-scale Retinex(AFSR)is proposed to clarify underwater images or videos.First,we design an adaptive full-scale filter that is guided by the optical transmission rate to estimate illumination components.Then,to reduce the computational complexity,we develop a quantitative mapping method instead of non-linear log functions for directly calculating the reflection component.The proposed method is capable of real-time processing of underwater videos using temporal coherence and Fourier transformations.Compared with eight state-of-the-art clarification methods,our method yields comparable or better results for image contrast enhancement,color-cast correction and clarity. 展开更多
关键词 UNDERWATER image enhancement RETINEX imaging through turbulent media
原文传递
Measuring turbulence in a circulating fluidized bed using PIV techniques 被引量:6
4
作者 Mayank Kashyap Benjapon Chalermsinsuwan Dimitri Gidaspow 《Particuology》 SCIE EI CAS CSCD 2011年第6期572-588,共17页
This study utilized the particle image velocimetry (P1V) technique, non-invasively near the wall, in the developing region, for the measurements of laminar and turbulent properties during circulation of Geldart B ty... This study utilized the particle image velocimetry (P1V) technique, non-invasively near the wall, in the developing region, for the measurements of laminar and turbulent properties during circulation of Geldart B type particles in the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) riser. A novel method was used to measure axial and radial laminar and turbulent solids dispersion coefficients using autocorrelation technique. The instantaneous and hydrodynamic velocities for the solid phase were measured simultaneously in the axial and radial directions using a CCD camera, with the help of a colored rotating transparency. The measured properties, such as laminar and Reynolds stresses, laminar and turbulent granular tempera- tures, laminar and turbulent dispersion coefficients and energy spectra exhibited anisotropy. The mixing in the riser was on the level of clusters. The total granular temperatures were in reasonable agreement with the literature values. However, the axial and radial solids dispersion coefficients measured near the wall were slightly lower than the radially averaged values in the literature. 展开更多
关键词 Particle image velocimetry (PIV) Dispersion coefficient Autocorrelation Turbulence Anisotrnpy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部