The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic...The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic electrons.The simulations use an extended fluid code(ExFC)based on a four-field gyro-Landau-fluid(GLF)model.The multispecies form of the normalized GLF equations is presented,which guarantees the self-consistent evolution of both bulk ions and impurities.With parametric profiles of the cyclone base case,well-benchmarked ExFC is employed to perform simulations focusing on different impurity density profiles.For a fixed temperature profile,it is found that the turbulent heat diffusivity of bulk ions in a quasi-steady state is usually lower than that without impurities,which is contrary to the linear and quasilinear predictions.The evolutions of the temperature gradient and heat diffusivity exhibit a fast relaxation process,indicating that the destabilization of the outwardly peaked impurity profile is a transient state response.Furthermore,the impurity effects from different profiles can obviously influence the nonlinear critical temperature gradient,which is likely to be dominated by linear effects.These results suggest that the improvement in plasma confinement could be attributed to the impurities,most likely through adjusting both heat diffusivity and the critical temperature gradient.展开更多
The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of signi...The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis.展开更多
In order to make the numerical calculation of viscous flows more convenient for the flows in channel with complicated profile governing equations expressed in the arbitrary curvilinear coordinates were derived by mean...In order to make the numerical calculation of viscous flows more convenient for the flows in channel with complicated profile governing equations expressed in the arbitrary curvilinear coordinates were derived by means of Favre density-weighted averaged method, and a turbulent model with effect of curvature modification was also derived. The numerical calculation of laminar and turbulent flown in divergent curved channels was carried out by means of parabolizeil computation method. The calculating results were used to analyze and investigate the aerodynamic performance of talor cascades in compressors preliminarily.展开更多
This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and stron...This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator.It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects(i.e.,piezoelectric coupling effect).In addition,there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end(i.e.,3-D effect).Hence,modeling of these effects or 3-D piezoelectric coupling modeling is an electromechanical basis for the piezoelectric devices,which contributes to the accurate prediction of their behavior.展开更多
As the Reynolds number increases, the skin friction has been identified as the dominant drag in many practical applications. In the present paper, the effects of the Reynolds number on the mean skin friction decomposi...As the Reynolds number increases, the skin friction has been identified as the dominant drag in many practical applications. In the present paper, the effects of the Reynolds number on the mean skin friction decomposition in turbulent channel flows up to Reτ= 5 200 are investigated based on two different methods, i.e., the FukagataIwamoto-Kasagi(FIK) identity(FUKAGATA, K., IWAMOTO, K., and KASAGI, N.Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows.Physics of Fluids, 14(11), L73–L76(2002)) and the Renard-Deck(RD) identity(DECK,S., RENARD, N., LARAUFIE, R., and WEISS, P.′E. Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to Reθ= 13 650.Journal of Fluid Mechanics, 743, 202–248(2014)). The direct numerical simulation(DNS) data provided by Lee and Moser(LEE, M. and MOSER, R. D. Direct numerical simulation of turbulent channel flow up to Reτ≈ 5 200. Journal of Fluid Mechanics,774, 395–415(2015)) are used. For these two skin friction decomposition methods, their decomposed constituents are discussed and compared for different Reynolds numbers.The integrands of the decomposed constituents are locally analyzed across the boundary layer to assess the actions associated with the inhomogeneity and multi-scale nature of turbulent motion. The scaling of the decomposed constituents and their integrands are presented. In addition, the boundary layer is divided into three sub-regions to evaluate the contributive proportion of each sub-region with an increase in the Reynolds number.展开更多
BACKGROUND : Digital subtraction angiography (DSA) is always regarded as the golden standard for diagnosis of intracranial aneurysm; however, the procedure is complex, traumatic, expensive and easy to induce vascul...BACKGROUND : Digital subtraction angiography (DSA) is always regarded as the golden standard for diagnosis of intracranial aneurysm; however, the procedure is complex, traumatic, expensive and easy to induce vascular complication. Three-dimensional computed tomography angiography (3D-CTA) can make up deficiencies of DSA; therefore, it is used in clinical therapy wider and wider. OBJECTIVE : To evaluate the clinical effect of 3D-CTA on disruption and hemorrhage of intracranial aneurysm pre- and post-operation and compare with the effect of DSA. DESIGN : Auto-control contrast observation SETTING : Department of Neurosurgery, Shengjing Hospital of China Medical University PARTICIPANTS : A number of 106 patients with disruption and hemorrhage of intracranial aneurysm were selected from the Department of Neurosurgery, Shengjing Hospital of China Medical University from January 2003 to April 2006. All patients were diagnosed with cranial operation and consent. There were 47 males and 59 females aged from 3-76 years with the mean age of (47±13) years. Among them, 82 patients had extensive subarachnoid hemorrhage (SAH), 7 had hemorrhage at longitudinal fissure, and 17 had hemorrhage at ambiens cistema and lateral fissure. Moreover, intraventricular hematocele was accompanied on 13 patients and hematom on 9 patients. METHODS: (1) 3D-CTA examination: Siemens SOMATOM Sensation 64 CT was used in this study. The thickness was 1 mm and interval of reconstruction was 0.8 mm. Localizing section was plainly scanned as the standard of canthus line. Scan ranged from 30 mm below sella to 50 mm above sella. Non-ion contrast medium of Omnipaque 350 (concentration of iodine was 350 g/L) was inserted into anterior vein of elbow with 18G trochar retained with high-pressured injectoc pum. The speed was 4.5 mL/s and the total volume was 80-100 mL with the means of 90 mL. Scan started at 10-20 s after injection of contrast medium. Original image was dealt with Leonardo workstation and retreated with Syngo software. Volume rendering and maximum intensity projection were used to reconstructed images, (2) All 106 patients suffered from occlusion of aneurysm clamp. Before operation, 3D-CTA was undertaken and DSA was followed. After operation, patients were rechecked with 3D-CTA. MAIN OUTCOME MEASURES: Comparisons between 3D-CTA and DSA. RESULTS : All 106 patients were involved in the final analysis. (1) Examination of 3D-CTA and DSA: Among 118 patients with aneurysm, 110 were checked with 3D-CTA and the detected rate was 93.2% (110/118). Among other 8 cases, 3 were negative and checked again with DSA; 1 had pericallosal aneurysm, 1 ophthalmic aneurysm, and 1 anterior choroidal artery of aneurysm. 3D-CTA results of other 5 cases were suspicious, and then, they were regarded as having aneurysm with DSA. Before operation, correlation among site, body, neck of aneurysm and peripheral anatomic structure were shown sufficiently. After operation, 82 patients were rechecked with 3D-CTA, which was complete occlusion, precise, unobvious constriction, emphraxis or remains as compared with 3D-CTA those pre-operation. (2) Characteristics of 3D-CTA: With multiple vessels and angles, 3D-CTA observed the relationship between aneurysm neck and carried artery and showed thrombosis in cavity of aneurysm, calcification of aneurysm wall and peripheral structure of vessel at the same time. However, DSA could not detect the reactions mentioned above. It could delete image of cranium, simulate image of operative route, eliminate artifact induced by metal, but not distinguish blood stream direction. Meanwhile, posterior communicating artery was always poor during circle of Willis artery showing. CONCLUSION: (1) 3D-CTA is characterized by simple operation and non-invasive showing vascular stereo structure and correlation. Therefore, it is significant for diagnosis and designing plan of operative approach and focal location pre-operation and evaluating effect post-operation. (2) 3D-CTA does not completely replace DSA on the diagnosis of intracranial aneurysm.展开更多
The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection.In this paper,we investigate the influence of atmospheric turbulence on the rotatio...The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection.In this paper,we investigate the influence of atmospheric turbulence on the rotational Doppler effect.First,we deduce the generalized formula of the rotational Doppler shift in atmospheric turbulence by mode decomposition.It is found that the rotational Doppler signal frequency spectrum will be broadened,and the bandwidth is related to the turbulence intensity.In addition,as the propagation distance increases,the bandwidth also increases.And when C_(n)^(2)≤5×10^(-15)m^(-2/3)and 2z≤2 km,the rotational Doppler signal frequency spectrum width d and the spiral spectrum width d_(0)satisfy the relationship d=2d_(0-1).Finally,we analyze the influence of mode crosstalk on the rotational Doppler effect,and the results show that it destroys the symmetrical distribution of the rotational Doppler spectrum about 2l·Ω/2π.This theoretical model enables us to better understand the generation of the rotational Doppler frequency and may help us better analyze the influence of the complex atmospheric environment on the rotational Doppler frequency.展开更多
A scale-similarity model of a two-point two-time Lagrangian velocity correlation(LVC) was originally developed for the relative dispersion of tracer particles in isotropic turbulent flows(HE, G. W., JIN, G. D., and ZH...A scale-similarity model of a two-point two-time Lagrangian velocity correlation(LVC) was originally developed for the relative dispersion of tracer particles in isotropic turbulent flows(HE, G. W., JIN, G. D., and ZHAO, X. Scale-similarity model for Lagrangian velocity correlations in isotropic and stationary turbulence. Physical Review E, 80, 066313(2009)). The model can be expressed as a two-point Eulerian space correlation and the dispersion velocity V. The dispersion velocity denotes the rate at which one moving particle departs from another fixed particle. This paper numerically validates the robustness of the scale-similarity model at high Taylor micro-scale Reynolds numbers up to 373, which are much higher than the original values(R_λ = 66, 102). The effect of the Reynolds number on the dispersion velocity in the scale-similarity model is carefully investigated. The results show that the scale-similarity model is more accurate at higher Reynolds numbers because the two-point Lagrangian velocity correlations with different initial spatial separations collapse into a universal form compared with a combination of the initial separation and the temporal separation via the dispersion velocity.Moreover, the dispersion velocity V normalized by the Kolmogorov velocity V_η ≡ η/τ_η in which η and τ_η are the Kolmogorov space and time scales, respectively, scales with the Reynolds number R_λ as V/V_η ∝ R_λ^(1.39) obtained from the numerical data.展开更多
The counter-gradient terms in the computations of turbulent fluxes of heat and moisture have been included in the PBL parameterization of a regional model for monsoon prediction. Results show that inclusion of counter...The counter-gradient terms in the computations of turbulent fluxes of heat and moisture have been included in the PBL parameterization of a regional model for monsoon prediction. Results show that inclusion of counter-gradient terms has a marginal impact in the prediction of large scale monsoon circulation and rainfall rates.展开更多
New Reynolds' mean momentum equations including both turbulent viscosity and dispersion are used to analyze atmospheric balance motions of the planetary boundary layer. It is pointed out that turbulent dispersion ...New Reynolds' mean momentum equations including both turbulent viscosity and dispersion are used to analyze atmospheric balance motions of the planetary boundary layer. It is pointed out that turbulent dispersion with r 0 will increase depth of Ekman layer, reduce wind velocity in Ekman layer and produce a more satisfactory Ekman spiral lines fit the observed wind hodograph. The wind profile in the surface layer including tur-bulent dispersion is still logarithmic but the von Karman constant k is replaced by k1 = 1 -2/k, the wind increasesa little more rapidly with height.展开更多
The laminar-turbulent transition has always been a hot topic of fluid mechanics. Receptivity is the initial stage and plays a crucial role in the entire transition process. The previous studies of receptivity focus on...The laminar-turbulent transition has always been a hot topic of fluid mechanics. Receptivity is the initial stage and plays a crucial role in the entire transition process. The previous studies of receptivity focus on external disturbances such as sound waves and vortices in the free stream, whereas those on the leading-edge receptivity to the three-dimensional free-stream turbulence (FST), which is more general in the nature, are rarely reported. In consideration of this, this work is devoted to investigating the receptivity process of three-dimensional Tollmien-Schlichting (T-S) wave packets excited by the three-dimensional FST in a flat-plate boundary layer numerically. The relations between the leading-edge receptivity and the turbulence intensity are established, and the influence of the FST directions on the propagation directions and group velocities of the excited T-S wave packets is studied. Moreover, the leading-edge receptivity to the anisotropic FST is also studied. This parametric investigation can contribute to the prediction of laminar-turbulent transition.展开更多
The quantum Hall effect(QHE),which is usually observed in two-dimensional systems,was predicted theoretically and observed experimentally in three-dimensional(3 D)topological semimetal.However,there are some inconsist...The quantum Hall effect(QHE),which is usually observed in two-dimensional systems,was predicted theoretically and observed experimentally in three-dimensional(3 D)topological semimetal.However,there are some inconsistencies between the theory and the experiments showing the theory is imperfect.Here,we generalize the theory of the 3 D QHE of Fermi arcs in Weyl semimetal.Through calculating the sheet Hall conductivity of a Weyl semimetal slab,we show that the 3 D QHE of Fermi arcs can occur in a large energy range and the thickness dependences of the QHE in different Fermi energies are distinct.When the Fermi energy is near the Weyl nodes,the Fermi arcs give rise to the QHE which is independent of the thickness of the slab.When the Fermi energy is not near the Weyl nodes,the two Fermi arcs form a complete Fermi loop with the assistance of bulk states giving rise to the QHE which is dependent on the sample thickness.We also demonstrate how the band anisotropic terms influence the QHE of Fermi arcs.Our theory complements the imperfections of the present theory of 3 D QHE of Fermi arcs.展开更多
Objective: To observe the recently therapeutic effects and toxicity of three-dimensional conformal radiotherapy combined with whole brain irradiation for patients with brain metastasis. Methods: 33 cases were treate...Objective: To observe the recently therapeutic effects and toxicity of three-dimensional conformal radiotherapy combined with whole brain irradiation for patients with brain metastasis. Methods: 33 cases were treated by whole brain irradiation at first, the dose of which was 36-40 Gy (18-20 f). Then three-dimensional conformal radiotherapy was added to the focus with a total dose of 20-25 Gy, whose fractionated dose was 2-5 Gy/time, 5 times/week or 3 times/week. Results: Within 1 month after radiotherapy, according to imaging of the brain, the CR of all patients was 45.5%, PR 36.4%, NC 15.1%, and PD 3%. For the 32 cases with neural symptoms before radiation, the CR of the symptoms was 40.6% and PR 59.4%. All patients gained different increases in KPS grade. By the end of the follow-up period, there were 22 deaths with the mean survival time up to 9.3 months. Conclusion: Three-dimensional conformal radiotherapy combined with whole brain irradiation can not only effectively control brain metastases and improve life quality, but also tends to prolong survival time.展开更多
Previous researches on the mechanical model of toppling failure mainly concentrated on twodimensional mechanical model(TwDM) analysis. The TwDM analysis assumes the width of the slab beam is unit width without conside...Previous researches on the mechanical model of toppling failure mainly concentrated on twodimensional mechanical model(TwDM) analysis. The TwDM analysis assumes the width of the slab beam is unit width without considering the lateral constraint force. The assumed conditions are obviously different from the site conditions, thus there is a certain difference between the calculated results and the field work. A three-dimensional mechanical model(ThDM)of toppling failure was established, considering that the slab beam was mainly subject to self-weight, the frictional resistance of interlayer and lateral constraint force. Due to the progressive characteristics of toppling failure, the concept and the formula of the first fracture depth(FFD) of toppling was raised and constructed. The case study indicates that the ThDM is more effective and can be accurately used to calculate the toppling fracture depth of the slab beam. The FFD decreases proportionally with the increase of slab beam width. FFD grows fast when the slab beam width is less than 2.0 m and it tends to be stable when the slab beam width is above 2.0 m. The FFD decreases with the increase of the lateral constraint coefficient, indicating that the boundary condition of the free space is positively correlated with the stability and depth of toppling. This is a good explanation of the free space effect. This study provides a reference for the stability evaluation and prevention-control design of toppling slope in the future.展开更多
In this paper, we investigate the performance of the bulk fin field effect transistor (FinFET) through a three- dimensional (3D) full band Monte Carlo simulator with quantum correction. Several scattering mechanis...In this paper, we investigate the performance of the bulk fin field effect transistor (FinFET) through a three- dimensional (3D) full band Monte Carlo simulator with quantum correction. Several scattering mechanisms, such as the acoustic and optical phonon scattering, the ionized impurity scattering, the impact ionization scattering and the surface roughness scattering are considered in our simulator. The effects of the substrate bias and the surface roughness scattering near the Si/SiO2 interface on the performance of bulk FinFET are mainly discussed in our work. Our results show that the on-current of bulk FinFET is sensitive to the surface roughness and that we can reduce the substrate leakage current by modulating the substrate bias voltage.展开更多
The failure mechanism of two-dimensional(2D) and three-dimensional(3D) slopes were investigated by using the strength reduction method.An extensive study of 3D effect was conducted with respect to boundary conditi...The failure mechanism of two-dimensional(2D) and three-dimensional(3D) slopes were investigated by using the strength reduction method.An extensive study of 3D effect was conducted with respect to boundary conditions,shear strength and concentrated surcharge load.The results obtained by 2D and 3D analyses were compared and the applicable scope of 2D and 3D method was analyzed.The results of the numerical simulation show that 3D effect is sensitive to the width of slip surface.As for slopes with specific geometry,3D effect is influenced by dimensionless parameter c/(γHtanφ).For those infinite slopes with local loading,external load has the major impact on failure mode.For those slopes with local loading and geometric constraints,the failure mode is influenced by both factors.With the increase of loading length,boundary condition exerts a more significant impact on the failure mode,and then 2D and 3D stability charts are developed,which provides a rapid and reliable way to calculate 2D and 3D factor of safety without iteration.Finally,a simple and practical calculation procedure based on the study of 3D effect and stability charts is proposed to recognize the right time to apply 2D or 3D method.展开更多
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo...An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.展开更多
The accelerated arriving of 5G era has brought a new round of intelligent transformation which will completely emancipate smart terminal devices.While the subsequent deleterious effect of electromagnetic wave on elect...The accelerated arriving of 5G era has brought a new round of intelligent transformation which will completely emancipate smart terminal devices.While the subsequent deleterious effect of electromagnetic wave on electronic devices is increasingly serious,driving the growth of next-generation electromagnetic wave absorbents.As a tactful combination of components and structures,three-dimensional(3D)macroscopic absorbents with fascinating synergy afford exceptional electromagnetic wave absorption,and tremendous efforts have been devoted to this investigation.However,in terms of macroscopic absorbents and their synergistic effect,few reviews are proposed to comb the latest achievements and detailed synergy.This review article focuses on the synergistic effect of macro-architectured absorbents mainly including structure-induced synergy,structure-components synergy,and multiple-components induced synergy.And then the potential construction principles and strategies of macroscopic absorbents are combed.Significantly,the key information for structures and components manipulation including nano-micro design and components regulation is further dissected by critically selected cutting-edge 3D macroscopic absorbents.Moreover,a brief summary of multifunctional electromagnetic wave absorbents(EWAs)-based macroscopic structures is presented.Finally,the development prospects and challenges of these materials are discussed.展开更多
Cavitation is often triggered when the fluid pres- sure is lower than the vapor pressure at a local thermo- dynamic state. The present article reviews recent progress made toward developing modeling and computational ...Cavitation is often triggered when the fluid pres- sure is lower than the vapor pressure at a local thermo- dynamic state. The present article reviews recent progress made toward developing modeling and computational strat- egies for cavitation predictions under both isothermal and cryogenic conditions, with an emphasis on the attached cav- ity. The review considers alternative cavitation models along Reynolds-averaged Navier-Stokes and very lager eddy simu- lation turbulence approaches to ensure that the computational tools can handle flows of engineering interests. Observing the substantial uncertainties associated with both modeling and experimental information, surrogate modeling strategies are reviewed to assess the implications and relative impor- tance of the various modeling and materials parameters. The exchange between static and dynamic pressures under the influence of the viscous effects can have a noticeable impact on the effective shape of a solid object, which can impact the cavitation structure. The thermal effect with respect to evaporation and condensation dynamics is examined to shed light on the fluid physics associated with cryogenic cav- itation. The surrogate modeling techniques are highlighted in the context of modeling sensitivity assessment. Keywords展开更多
Presently developed two-phase turbulence models under-predict the gas turbulent fluctuation, because their turbulence modification models cannot fully reflect the effect of particles. In this paper, a two-time-scale d...Presently developed two-phase turbulence models under-predict the gas turbulent fluctuation, because their turbulence modification models cannot fully reflect the effect of particles. In this paper, a two-time-scale dis- sipation model of turbulence modification, developed for the two-phase velocity correlation and for the dissipation rate of gas turbulent kinetic energy, is proposed and used to simulate sudden-expansion and swirling gas-particle flows. The proposed two-time scale model gives better results than the single-time scale model. Besides, a gas tur- bulence augmentation model accounting for the finite-size particle wake effect in the gas Reynolds stress equation is proposed. The proposed turbulence modification models are used to simulate two-phase pipe flows. It can prop- erly predict both turbulence reduction and turbulence enhancement for a certain size of particles observed in ex- periments.展开更多
基金supported by National Natural Science Foundation of China(Nos.U1967206 and 12275071)National Key R&D Program of China(No.2017YFE0301201)。
文摘The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic electrons.The simulations use an extended fluid code(ExFC)based on a four-field gyro-Landau-fluid(GLF)model.The multispecies form of the normalized GLF equations is presented,which guarantees the self-consistent evolution of both bulk ions and impurities.With parametric profiles of the cyclone base case,well-benchmarked ExFC is employed to perform simulations focusing on different impurity density profiles.For a fixed temperature profile,it is found that the turbulent heat diffusivity of bulk ions in a quasi-steady state is usually lower than that without impurities,which is contrary to the linear and quasilinear predictions.The evolutions of the temperature gradient and heat diffusivity exhibit a fast relaxation process,indicating that the destabilization of the outwardly peaked impurity profile is a transient state response.Furthermore,the impurity effects from different profiles can obviously influence the nonlinear critical temperature gradient,which is likely to be dominated by linear effects.These results suggest that the improvement in plasma confinement could be attributed to the impurities,most likely through adjusting both heat diffusivity and the critical temperature gradient.
基金supported by the National Natural Science Foundation of China (No.52374124)National Youth Science Foundation of China (No.52204135)+3 种基金Xing Liao Talent Plan (No.XLYC2202004)Young Elite Scientists Sponsorship Program by CAST (No.2023QNRC001)Liaoning Province International Science and Technology Cooperation Plan (No.2022JH2/1070004)Liaoning Natural Science Foundation Program (No.2022-BS-327)。
文摘The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis.
文摘In order to make the numerical calculation of viscous flows more convenient for the flows in channel with complicated profile governing equations expressed in the arbitrary curvilinear coordinates were derived by means of Favre density-weighted averaged method, and a turbulent model with effect of curvature modification was also derived. The numerical calculation of laminar and turbulent flown in divergent curved channels was carried out by means of parabolizeil computation method. The calculating results were used to analyze and investigate the aerodynamic performance of talor cascades in compressors preliminarily.
基金supported by the Japan Society for the Promotion of Science under KAKENHI Grant Nos.19F19379 and 20H04199。
文摘This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator.It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects(i.e.,piezoelectric coupling effect).In addition,there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end(i.e.,3-D effect).Hence,modeling of these effects or 3-D piezoelectric coupling modeling is an electromechanical basis for the piezoelectric devices,which contributes to the accurate prediction of their behavior.
基金Project supported by the National Basic Research Program of China(973 Program)(No.2014CB744802)the National Natural Science Foundation of China(No.11772194)
文摘As the Reynolds number increases, the skin friction has been identified as the dominant drag in many practical applications. In the present paper, the effects of the Reynolds number on the mean skin friction decomposition in turbulent channel flows up to Reτ= 5 200 are investigated based on two different methods, i.e., the FukagataIwamoto-Kasagi(FIK) identity(FUKAGATA, K., IWAMOTO, K., and KASAGI, N.Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows.Physics of Fluids, 14(11), L73–L76(2002)) and the Renard-Deck(RD) identity(DECK,S., RENARD, N., LARAUFIE, R., and WEISS, P.′E. Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to Reθ= 13 650.Journal of Fluid Mechanics, 743, 202–248(2014)). The direct numerical simulation(DNS) data provided by Lee and Moser(LEE, M. and MOSER, R. D. Direct numerical simulation of turbulent channel flow up to Reτ≈ 5 200. Journal of Fluid Mechanics,774, 395–415(2015)) are used. For these two skin friction decomposition methods, their decomposed constituents are discussed and compared for different Reynolds numbers.The integrands of the decomposed constituents are locally analyzed across the boundary layer to assess the actions associated with the inhomogeneity and multi-scale nature of turbulent motion. The scaling of the decomposed constituents and their integrands are presented. In addition, the boundary layer is divided into three sub-regions to evaluate the contributive proportion of each sub-region with an increase in the Reynolds number.
文摘BACKGROUND : Digital subtraction angiography (DSA) is always regarded as the golden standard for diagnosis of intracranial aneurysm; however, the procedure is complex, traumatic, expensive and easy to induce vascular complication. Three-dimensional computed tomography angiography (3D-CTA) can make up deficiencies of DSA; therefore, it is used in clinical therapy wider and wider. OBJECTIVE : To evaluate the clinical effect of 3D-CTA on disruption and hemorrhage of intracranial aneurysm pre- and post-operation and compare with the effect of DSA. DESIGN : Auto-control contrast observation SETTING : Department of Neurosurgery, Shengjing Hospital of China Medical University PARTICIPANTS : A number of 106 patients with disruption and hemorrhage of intracranial aneurysm were selected from the Department of Neurosurgery, Shengjing Hospital of China Medical University from January 2003 to April 2006. All patients were diagnosed with cranial operation and consent. There were 47 males and 59 females aged from 3-76 years with the mean age of (47±13) years. Among them, 82 patients had extensive subarachnoid hemorrhage (SAH), 7 had hemorrhage at longitudinal fissure, and 17 had hemorrhage at ambiens cistema and lateral fissure. Moreover, intraventricular hematocele was accompanied on 13 patients and hematom on 9 patients. METHODS: (1) 3D-CTA examination: Siemens SOMATOM Sensation 64 CT was used in this study. The thickness was 1 mm and interval of reconstruction was 0.8 mm. Localizing section was plainly scanned as the standard of canthus line. Scan ranged from 30 mm below sella to 50 mm above sella. Non-ion contrast medium of Omnipaque 350 (concentration of iodine was 350 g/L) was inserted into anterior vein of elbow with 18G trochar retained with high-pressured injectoc pum. The speed was 4.5 mL/s and the total volume was 80-100 mL with the means of 90 mL. Scan started at 10-20 s after injection of contrast medium. Original image was dealt with Leonardo workstation and retreated with Syngo software. Volume rendering and maximum intensity projection were used to reconstructed images, (2) All 106 patients suffered from occlusion of aneurysm clamp. Before operation, 3D-CTA was undertaken and DSA was followed. After operation, patients were rechecked with 3D-CTA. MAIN OUTCOME MEASURES: Comparisons between 3D-CTA and DSA. RESULTS : All 106 patients were involved in the final analysis. (1) Examination of 3D-CTA and DSA: Among 118 patients with aneurysm, 110 were checked with 3D-CTA and the detected rate was 93.2% (110/118). Among other 8 cases, 3 were negative and checked again with DSA; 1 had pericallosal aneurysm, 1 ophthalmic aneurysm, and 1 anterior choroidal artery of aneurysm. 3D-CTA results of other 5 cases were suspicious, and then, they were regarded as having aneurysm with DSA. Before operation, correlation among site, body, neck of aneurysm and peripheral anatomic structure were shown sufficiently. After operation, 82 patients were rechecked with 3D-CTA, which was complete occlusion, precise, unobvious constriction, emphraxis or remains as compared with 3D-CTA those pre-operation. (2) Characteristics of 3D-CTA: With multiple vessels and angles, 3D-CTA observed the relationship between aneurysm neck and carried artery and showed thrombosis in cavity of aneurysm, calcification of aneurysm wall and peripheral structure of vessel at the same time. However, DSA could not detect the reactions mentioned above. It could delete image of cranium, simulate image of operative route, eliminate artifact induced by metal, but not distinguish blood stream direction. Meanwhile, posterior communicating artery was always poor during circle of Willis artery showing. CONCLUSION: (1) 3D-CTA is characterized by simple operation and non-invasive showing vascular stereo structure and correlation. Therefore, it is significant for diagnosis and designing plan of operative approach and focal location pre-operation and evaluating effect post-operation. (2) 3D-CTA does not completely replace DSA on the diagnosis of intracranial aneurysm.
基金Project supported by the Research Plan Project of the National University of Defense Technology(Grant No.ZK18-0102)the National Natural Science Foundation of China(Grant No.61871389)+1 种基金the State Key Laboratory of Pulsed Power Laser Technology(Grant No.KY21C604)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant Nos.CX20220007 and CX20230024)。
文摘The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection.In this paper,we investigate the influence of atmospheric turbulence on the rotational Doppler effect.First,we deduce the generalized formula of the rotational Doppler shift in atmospheric turbulence by mode decomposition.It is found that the rotational Doppler signal frequency spectrum will be broadened,and the bandwidth is related to the turbulence intensity.In addition,as the propagation distance increases,the bandwidth also increases.And when C_(n)^(2)≤5×10^(-15)m^(-2/3)and 2z≤2 km,the rotational Doppler signal frequency spectrum width d and the spiral spectrum width d_(0)satisfy the relationship d=2d_(0-1).Finally,we analyze the influence of mode crosstalk on the rotational Doppler effect,and the results show that it destroys the symmetrical distribution of the rotational Doppler spectrum about 2l·Ω/2π.This theoretical model enables us to better understand the generation of the rotational Doppler frequency and may help us better analyze the influence of the complex atmospheric environment on the rotational Doppler frequency.
基金Project supported by the Science Challenge Program(No.TZ2016001)the National Natural Science Foundation of China(Nos.11472277,11572331,11232011,and 11772337)+1 种基金the Strategic Priority Research Program,Chinese Academy of Sciences(No.XDB22040104)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(No.QYZDJ-SSW-SYS002)
文摘A scale-similarity model of a two-point two-time Lagrangian velocity correlation(LVC) was originally developed for the relative dispersion of tracer particles in isotropic turbulent flows(HE, G. W., JIN, G. D., and ZHAO, X. Scale-similarity model for Lagrangian velocity correlations in isotropic and stationary turbulence. Physical Review E, 80, 066313(2009)). The model can be expressed as a two-point Eulerian space correlation and the dispersion velocity V. The dispersion velocity denotes the rate at which one moving particle departs from another fixed particle. This paper numerically validates the robustness of the scale-similarity model at high Taylor micro-scale Reynolds numbers up to 373, which are much higher than the original values(R_λ = 66, 102). The effect of the Reynolds number on the dispersion velocity in the scale-similarity model is carefully investigated. The results show that the scale-similarity model is more accurate at higher Reynolds numbers because the two-point Lagrangian velocity correlations with different initial spatial separations collapse into a universal form compared with a combination of the initial separation and the temporal separation via the dispersion velocity.Moreover, the dispersion velocity V normalized by the Kolmogorov velocity V_η ≡ η/τ_η in which η and τ_η are the Kolmogorov space and time scales, respectively, scales with the Reynolds number R_λ as V/V_η ∝ R_λ^(1.39) obtained from the numerical data.
文摘The counter-gradient terms in the computations of turbulent fluxes of heat and moisture have been included in the PBL parameterization of a regional model for monsoon prediction. Results show that inclusion of counter-gradient terms has a marginal impact in the prediction of large scale monsoon circulation and rainfall rates.
文摘New Reynolds' mean momentum equations including both turbulent viscosity and dispersion are used to analyze atmospheric balance motions of the planetary boundary layer. It is pointed out that turbulent dispersion with r 0 will increase depth of Ekman layer, reduce wind velocity in Ekman layer and produce a more satisfactory Ekman spiral lines fit the observed wind hodograph. The wind profile in the surface layer including tur-bulent dispersion is still logarithmic but the von Karman constant k is replaced by k1 = 1 -2/k, the wind increasesa little more rapidly with height.
基金supported by the National Natural Science Foundation of China(Nos.11472139 and11802143)the Natural Science Foundation of Jiangsu Province of China(No.BK20180781)
文摘The laminar-turbulent transition has always been a hot topic of fluid mechanics. Receptivity is the initial stage and plays a crucial role in the entire transition process. The previous studies of receptivity focus on external disturbances such as sound waves and vortices in the free stream, whereas those on the leading-edge receptivity to the three-dimensional free-stream turbulence (FST), which is more general in the nature, are rarely reported. In consideration of this, this work is devoted to investigating the receptivity process of three-dimensional Tollmien-Schlichting (T-S) wave packets excited by the three-dimensional FST in a flat-plate boundary layer numerically. The relations between the leading-edge receptivity and the turbulence intensity are established, and the influence of the FST directions on the propagation directions and group velocities of the excited T-S wave packets is studied. Moreover, the leading-edge receptivity to the anisotropic FST is also studied. This parametric investigation can contribute to the prediction of laminar-turbulent transition.
基金supported by the National Natural Science Foundation of China(Grant No.11974168)(L.S.)。
文摘The quantum Hall effect(QHE),which is usually observed in two-dimensional systems,was predicted theoretically and observed experimentally in three-dimensional(3 D)topological semimetal.However,there are some inconsistencies between the theory and the experiments showing the theory is imperfect.Here,we generalize the theory of the 3 D QHE of Fermi arcs in Weyl semimetal.Through calculating the sheet Hall conductivity of a Weyl semimetal slab,we show that the 3 D QHE of Fermi arcs can occur in a large energy range and the thickness dependences of the QHE in different Fermi energies are distinct.When the Fermi energy is near the Weyl nodes,the Fermi arcs give rise to the QHE which is independent of the thickness of the slab.When the Fermi energy is not near the Weyl nodes,the two Fermi arcs form a complete Fermi loop with the assistance of bulk states giving rise to the QHE which is dependent on the sample thickness.We also demonstrate how the band anisotropic terms influence the QHE of Fermi arcs.Our theory complements the imperfections of the present theory of 3 D QHE of Fermi arcs.
文摘Objective: To observe the recently therapeutic effects and toxicity of three-dimensional conformal radiotherapy combined with whole brain irradiation for patients with brain metastasis. Methods: 33 cases were treated by whole brain irradiation at first, the dose of which was 36-40 Gy (18-20 f). Then three-dimensional conformal radiotherapy was added to the focus with a total dose of 20-25 Gy, whose fractionated dose was 2-5 Gy/time, 5 times/week or 3 times/week. Results: Within 1 month after radiotherapy, according to imaging of the brain, the CR of all patients was 45.5%, PR 36.4%, NC 15.1%, and PD 3%. For the 32 cases with neural symptoms before radiation, the CR of the symptoms was 40.6% and PR 59.4%. All patients gained different increases in KPS grade. By the end of the follow-up period, there were 22 deaths with the mean survival time up to 9.3 months. Conclusion: Three-dimensional conformal radiotherapy combined with whole brain irradiation can not only effectively control brain metastases and improve life quality, but also tends to prolong survival time.
基金financially supported by the National Key R&D Program of China (2018YFC1504905)the Funds for Creative Research Groups of China (41521002)+1 种基金the Opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology, SKLGP2022K004)the National Natural Science Foundation of China (41907250, 41772317, 52104082)。
文摘Previous researches on the mechanical model of toppling failure mainly concentrated on twodimensional mechanical model(TwDM) analysis. The TwDM analysis assumes the width of the slab beam is unit width without considering the lateral constraint force. The assumed conditions are obviously different from the site conditions, thus there is a certain difference between the calculated results and the field work. A three-dimensional mechanical model(ThDM)of toppling failure was established, considering that the slab beam was mainly subject to self-weight, the frictional resistance of interlayer and lateral constraint force. Due to the progressive characteristics of toppling failure, the concept and the formula of the first fracture depth(FFD) of toppling was raised and constructed. The case study indicates that the ThDM is more effective and can be accurately used to calculate the toppling fracture depth of the slab beam. The FFD decreases proportionally with the increase of slab beam width. FFD grows fast when the slab beam width is less than 2.0 m and it tends to be stable when the slab beam width is above 2.0 m. The FFD decreases with the increase of the lateral constraint coefficient, indicating that the boundary condition of the free space is positively correlated with the stability and depth of toppling. This is a good explanation of the free space effect. This study provides a reference for the stability evaluation and prevention-control design of toppling slope in the future.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CBA00604)
文摘In this paper, we investigate the performance of the bulk fin field effect transistor (FinFET) through a three- dimensional (3D) full band Monte Carlo simulator with quantum correction. Several scattering mechanisms, such as the acoustic and optical phonon scattering, the ionized impurity scattering, the impact ionization scattering and the surface roughness scattering are considered in our simulator. The effects of the substrate bias and the surface roughness scattering near the Si/SiO2 interface on the performance of bulk FinFET are mainly discussed in our work. Our results show that the on-current of bulk FinFET is sensitive to the surface roughness and that we can reduce the substrate leakage current by modulating the substrate bias voltage.
基金Project (10972238) supported by the National Natural Science Foundation of ChinaProject (2010ssxt237) supported by the Excellent Doctoral Thesis Program of Central South University,China
文摘The failure mechanism of two-dimensional(2D) and three-dimensional(3D) slopes were investigated by using the strength reduction method.An extensive study of 3D effect was conducted with respect to boundary conditions,shear strength and concentrated surcharge load.The results obtained by 2D and 3D analyses were compared and the applicable scope of 2D and 3D method was analyzed.The results of the numerical simulation show that 3D effect is sensitive to the width of slip surface.As for slopes with specific geometry,3D effect is influenced by dimensionless parameter c/(γHtanφ).For those infinite slopes with local loading,external load has the major impact on failure mode.For those slopes with local loading and geometric constraints,the failure mode is influenced by both factors.With the increase of loading length,boundary condition exerts a more significant impact on the failure mode,and then 2D and 3D stability charts are developed,which provides a rapid and reliable way to calculate 2D and 3D factor of safety without iteration.Finally,a simple and practical calculation procedure based on the study of 3D effect and stability charts is proposed to recognize the right time to apply 2D or 3D method.
基金Project(51274250)supported by the National Natural Science Foundation of ChinaProject(2012BAK09B02-05)supported by the National Key Technology R&D Program during the 12th Five-year Plan of China
文摘An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.
基金supported by the National Natural Science Foundation of China(No.52274362)the Doctorial Foundation of Henan University of Technology(Nos.2021BS030 and 2020BS030)+5 种基金the Key R&D projects of Henan Province(No.221111230800)the Innovative Funds Plan of Henan University of Technology(No.2021ZKCJ05)the Key Scientific and Technological Research Projects in Henan Province(No.222102240091)the Natural Science Foundation from the Department of Science and Technology of Henan Province(No.232300420309)the Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Key Laboratory of Engineering Dielectrics and Its Application(Harbin University of Science and Technology),Ministry of Education.
文摘The accelerated arriving of 5G era has brought a new round of intelligent transformation which will completely emancipate smart terminal devices.While the subsequent deleterious effect of electromagnetic wave on electronic devices is increasingly serious,driving the growth of next-generation electromagnetic wave absorbents.As a tactful combination of components and structures,three-dimensional(3D)macroscopic absorbents with fascinating synergy afford exceptional electromagnetic wave absorption,and tremendous efforts have been devoted to this investigation.However,in terms of macroscopic absorbents and their synergistic effect,few reviews are proposed to comb the latest achievements and detailed synergy.This review article focuses on the synergistic effect of macro-architectured absorbents mainly including structure-induced synergy,structure-components synergy,and multiple-components induced synergy.And then the potential construction principles and strategies of macroscopic absorbents are combed.Significantly,the key information for structures and components manipulation including nano-micro design and components regulation is further dissected by critically selected cutting-edge 3D macroscopic absorbents.Moreover,a brief summary of multifunctional electromagnetic wave absorbents(EWAs)-based macroscopic structures is presented.Finally,the development prospects and challenges of these materials are discussed.
基金supported by the NASA Constellation University Institutes Program(CUIP),Claudia Meyer projeGt manager
文摘Cavitation is often triggered when the fluid pres- sure is lower than the vapor pressure at a local thermo- dynamic state. The present article reviews recent progress made toward developing modeling and computational strat- egies for cavitation predictions under both isothermal and cryogenic conditions, with an emphasis on the attached cav- ity. The review considers alternative cavitation models along Reynolds-averaged Navier-Stokes and very lager eddy simu- lation turbulence approaches to ensure that the computational tools can handle flows of engineering interests. Observing the substantial uncertainties associated with both modeling and experimental information, surrogate modeling strategies are reviewed to assess the implications and relative impor- tance of the various modeling and materials parameters. The exchange between static and dynamic pressures under the influence of the viscous effects can have a noticeable impact on the effective shape of a solid object, which can impact the cavitation structure. The thermal effect with respect to evaporation and condensation dynamics is examined to shed light on the fluid physics associated with cryogenic cav- itation. The surrogate modeling techniques are highlighted in the context of modeling sensitivity assessment. Keywords
基金State Key Development Program for Basic Research of China (No.2006CB200305), the National Natural Sci-ence Foundation of China (No.50376004), and Ph.D. Program Foundation of Ministry of Education of China (No.20030007028).
文摘Presently developed two-phase turbulence models under-predict the gas turbulent fluctuation, because their turbulence modification models cannot fully reflect the effect of particles. In this paper, a two-time-scale dis- sipation model of turbulence modification, developed for the two-phase velocity correlation and for the dissipation rate of gas turbulent kinetic energy, is proposed and used to simulate sudden-expansion and swirling gas-particle flows. The proposed two-time scale model gives better results than the single-time scale model. Besides, a gas tur- bulence augmentation model accounting for the finite-size particle wake effect in the gas Reynolds stress equation is proposed. The proposed turbulence modification models are used to simulate two-phase pipe flows. It can prop- erly predict both turbulence reduction and turbulence enhancement for a certain size of particles observed in ex- periments.