期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Turing Instability of Gray-Scott Reaction-Diffusion Model with Time Delay Effects
1
作者 Suqi Ma 《International Journal of Modern Nonlinear Theory and Application》 2023年第2期55-67,共13页
The reaction diffusion Gray-Scott model with time delay is put forward with the assumption of Neumann boundary condition is satisfied. Based on the Turing bifurcation condition, the Turing curves on two parameter plan... The reaction diffusion Gray-Scott model with time delay is put forward with the assumption of Neumann boundary condition is satisfied. Based on the Turing bifurcation condition, the Turing curves on two parameter plane are discussed without time delay. The normal form is computed via applying Lyapunov-Schmidt reduction method in system of PDE, and the bifurcating direction of pitchfork bifurcation underlying codimension-1 singularity of Turing point is computed. The continuation of Pitchfork bifurcation is simulated with varying free parameter continuously near the turing point, which is in coincidence with the theoritical analysis results. The wave pattern formation in the case of turing instability is also simulated which discover Turing oscillation phenomena from periodicity to irregularity. 展开更多
关键词 Reaction Diffusion turing bifurcation Normal Form Time Delay
下载PDF
Stability and Turing Patterns of a Predator-prey Model with Holling Type Ⅱ Functional Response and Allee Effect in Predator 被引量:1
2
作者 Lu CHEN Feng YANG Yong-li SONG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2023年第3期675-695,共21页
In this paper, we are concerned with a predator-prey model with Holling type Ⅱ functional response and Allee effect in predator. We first mathematically explore how the Allee effect affects the existence and stabilit... In this paper, we are concerned with a predator-prey model with Holling type Ⅱ functional response and Allee effect in predator. We first mathematically explore how the Allee effect affects the existence and stability of the positive equilibrium for the system without diffusion. The explicit dependent condition of the existence of the positive equilibrium on the strength of Allee effect is determined. It has been shown that there exist two positive equilibria for some modulate strength of Allee effect. The influence of the strength of the Allee effect on the stability of the coexistence equilibrium corresponding to high predator biomass is completely investigated and the analytically critical values of Hopf bifurcations are theoretically determined.We have shown that there exists stability switches induced by Allee effect. Finally, the diffusion-driven Turing instability, which can not occur for the original system without Allee effect in predator, is explored, and it has been shown that there exists diffusion-driven Turing instability for the case when predator spread slower than prey because of the existence of Allee effect in predator. 展开更多
关键词 predator-prey model Allee effect DIFFUSION STABILITY turing bifurcation
原文传递
Dynamics of SVEIS epidemic model with distinct incidence
3
作者 N. Nyamoradi M. Javidi B. Ahmad 《International Journal of Biomathematics》 2015年第6期99-117,共19页
In this paper, we study the global dynamics of a SVEIS epidemic model with distinct incidence for exposed and infectives. The model is analyzed for stability and bifurcation behavior. To account for the realistic phen... In this paper, we study the global dynamics of a SVEIS epidemic model with distinct incidence for exposed and infectives. The model is analyzed for stability and bifurcation behavior. To account for the realistic phenomenon of non-homogeneous mixing, the effect of diffusion on different population subclasses is considered. The diffusive model is analyzed using matrix stability theory and conditions for Turing bifurcation are derived. Numerical simulations support our analytical results on the dynamic behavior of tile model. 展开更多
关键词 SVEIS epidemic model DIFFUSION turing bifurcation stability basic repro-duction number numerical simulation.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部