The insensitive response to photoperiod and temperature is an important quantitative trait for soybean in wide adaptation breeding. The natural variation in response to photoperiod and temperature was detected using 2...The insensitive response to photoperiod and temperature is an important quantitative trait for soybean in wide adaptation breeding. The natural variation in response to photoperiod and temperature was detected using 275 accessions of soybean [Glycine max (L.) Merrill] from China. Genome-wide association mapping, based on population structure analysis, was carried out using 118 SSR markers by the TASSEL GLM (general linear model) program. Nine SSR markers (P〈0.01) were associated with the value of the response to photoperiod and temperature (VRPT) caused by days to flowering (DF), among which, Satt308 (LG M), Sattl50 (LG M) and Satt440 (LG l), were identified in both 2006 and 2007. Twelve SSR markers (P〈0.01) were associated with VRPT caused by days to maturity (DM), among which three markers, Satt387 (LG N), Satt307 (LG C2) and AW310961 (LG J), were detected in both 2006 and 2007. In addition, a total of 20 elite alleles were screened out over 2006 and 2007 for being associated with an insensitive response to photoperiod and temperature (IRPT) caused by DF and a total of seven different elite alleles were screened out for being associated with IRPT caused by DM. Among these elite alleles, five alleles, Satt150-244, Satt308-164, Satt308-206, Satt440-176, and Satt440-206, were associated with IRPT caused by DF and were identified in both years, but only one allele, Satt307-170, was identified as being associated with an IRPT caused by DM. Based on these elite alleles, a set of typical accessions were screened out. The result about the genetic basis of IRPT is meaningful for soybean wide adaption breeding.展开更多
In terms of 34-year monthly mean temperature series in 1946-1979,the multi-level maPPing model of neural netWork BP type was applied to calculate the system's fractual dimension Do=2'8,leading tO a three-level...In terms of 34-year monthly mean temperature series in 1946-1979,the multi-level maPPing model of neural netWork BP type was applied to calculate the system's fractual dimension Do=2'8,leading tO a three-level model of this type with ixj=3x2,k=l,and the 1980 monthly mean temperture predichon on a long-t6rm basis were prepared by steadily modifying the weighting coefficient,making for the correlation coefficient of 97% with the measurements.Furthermore,the weighhng parameter was modified for each month of 1980 by means of observations,therefore constrcuhng monthly mean temperature forecasts from January to December of the year,reaching the correlation of 99.9% with the measurements.Likewise,the resulting 1981 monthly predictions on a long-range basis with 1946-1980 corresponding records yielded the correlahon of 98% and the month-tO month forecasts of 99.4%.展开更多
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. Th...Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. The winter wheat cultivar Lantian 1 has high-temperature resistance to stripe rust. To determing the gene(s) for the stripe rust resistance, Lantian 1 was crossed with Mingxian 169 (M169). Seedlings of the parents, and F 1 , F 2 and F 2-3 progenies were tested with races CYR32 of Pst under controlled greenhouse conditions. Lantian 1 has a single partially dominant gene conferred resistance to race CYR32, designated as YrLT1. Simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrLT1. A linkage group of five SSR markers was constructed for YrLT1 using 166 F 2 plants. Based on the SSR marker consensus map and the position on wheat chromosome, the resistance gene was assigned on chromosome 2DL. Amplification of a set of nulli-tetrasomic Chinese Spring lines with SSR marker Xwmc797 confirmed that the resistance gene was located on the long arm of chromosome 2D. Because of its chromosomal location and the high-temperature resistance, this gene is different from previously described genes. The molecular map spanned 29.9 cM, and the genetic distance of two close markers Xbarc228 and Xcfd16 to resistance gene locus was 4.0 and 5.7 cM, respectively. The polymorphism rates of the flanking markers in 46 wheat lines were 2.1 and 2.1%, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 97.9% of tested genotypes. This new gene and flanking markers should be useful in developing wheat cultivars with high level and possible durable resistance to stripe rust.展开更多
Analytical thermal traveling-wave distribution in biological tissues through a bio-heat transfer (BHT) model with linear/quadratic temperature-dependent blood perfusion is discussed in this paper. Using the extended g...Analytical thermal traveling-wave distribution in biological tissues through a bio-heat transfer (BHT) model with linear/quadratic temperature-dependent blood perfusion is discussed in this paper. Using the extended generalized Riccati equation mapping method, we find analytical traveling wave solutions of the considered BHT equation. All the travelling wave solutions obtained have been used to explicitly investigate the effect of linear and quadratic coefficients of temperature dependence on temperature distribution in tissues. We found that the parameter of the nonlinear superposition formula for Riccati can be used to control the temperature of living tissues. Our results prove that the extended generalized Riccati equation mapping method is a powerful tool for investigating thermal traveling-wave distribution in biological tissues.展开更多
The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the tem...The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results.展开更多
Seasonal interaction between sea-surface temperature (SST) in the tropical eastern Pacific and ozone layer in Northern Hemisphere, ahd the layer,s teleconnection spatial structure caused by SST effeets, for January a...Seasonal interaction between sea-surface temperature (SST) in the tropical eastern Pacific and ozone layer in Northern Hemisphere, ahd the layer,s teleconnection spatial structure caused by SST effeets, for January and July, are statistically analysed. The result indicates that the areas spacially correlated between SST and ozone layer in January greatly differ from the ones in July and they show opposite tendency in the signs of correlation, so do the teleconnection pattern for the ozone lay6r due to effects of SST in different seasons. In addition, persistent' influence of SST on the ozone layer results insuperposition of seasonal SST effects on the layer and makes it characteristic of well-defined wavetrainsin responses to SST. It is concluded that SST in the tropical eastern Pacific is of great importance to thenorthern ozone layer distribution and its seasonal evolution.展开更多
We consider the one-dimensional bio-heat transfer equation with quadratic temperature-dependent blood perfusion, which governs the temperature distribution inside biological tissues. Using an extended mapping method w...We consider the one-dimensional bio-heat transfer equation with quadratic temperature-dependent blood perfusion, which governs the temperature distribution inside biological tissues. Using an extended mapping method with symbolic computation, we obtain the exact analytical thermal traveling wave solution, which describes the non-uniform temperature distribution inside the bodies. The found exact solution is used to investigate the temperature distribution in the tissues. It is found that the surrounding medium with higher temperature does not necessarily imply that the tissue will quickly (after a short duration of heating process) reach the desired temperature. It is also found that increased perfusion causes a decline in local temperature.展开更多
This paper discusses a procedure that was developed to delineate potential fishing grounds in Lake Malawi using data on chlorophyll-a concentration derived from Moderate-resolution Imaging Spectroradiometer (MODIS/AQU...This paper discusses a procedure that was developed to delineate potential fishing grounds in Lake Malawi using data on chlorophyll-a concentration derived from Moderate-resolution Imaging Spectroradiometer (MODIS/AQUA) in combination with lake surface temperature (LST) data obtained from Advanced Very High Resolution Radiometer (AVHRR) and MODIS/Terra satellite sensors. The paper draws from findings of studies [1,2] on development of algorithms for estimating chlorophyll-a and lake surface temperature in Lake Malawi from satellite imagery, respectively. To estimate chlorophyll concentration (a proxy for phytoplankton) in Lake Malawi using data from MODIS satellite imagery, in situ measurements of chlorophyll concentration were conducted at three selected sampling stations over the southeastern arm of Lake Malawi concurrent with satellite image acquisitions. These were regressed on chlorophyll-a concentration values obtained from Ocean Color (MODIS/AQUA) Data using SeaWIFS Data Analysis System (SeaDAS) software. From this, an equation for estimating chlorophyll-a concentration in Lake Malawi from MODIS satellite imagery was developed and used for mapping the spatial distribution of chlorophyll-a concentration in the lake. Since Lake Malawi is an oligotrophic lake, with an average value of chlorophyll concentration of 1 μg/L, areas in the lake with relatively high chlorophyll-a concentration were identified as potential locations for the development of the fishery industry. Estimation of lake surface temperature using satellite imagery involved two main activities. Firstly, in situ measurements of lake surface temperature were conducted at the three selected sampling stations over Lake Malawi concurrent with satellite image acquisitions. The second activity involved downloading and processing AVHRR and MODIS/Terra satellite imagery. AVHRR data covered the period September 1997 to February 1998 whereas MODIS/Terra data covered the period May to November, 2006. Both MODIS Land Surface Temperature (MOD11A1) and Ocean Color Sea Surface Temperature (SST) were downloaded from EOS Gateway website and processed into lake surface temperature. Two glass thermometers were used to measure temperature directly from the lake surface at a depth of 0 - 7.0 cm (i.e., skin temperature) and the average of the two readings was recorded as the lake surface temperature at a particular sampling station. Observed temperatures were regressed on remotely sensed data. ER Mapper was employed in drawing maps showing the distribution of lake surface temperature using the regression equation that was developed. Upwelling and downwelling zones were demarcated from lake surface temperature maps. Upwelling zones were identified as areas with a high potential for the development of the fishery industry because of their association with primary productivity. Using a simple overlay technique, data from both the spatial and temporal distribution of chlorophyll-a and lake surface temperature were used to delineate potential fishing grounds in Lake Malawi. The zone extending from Salima up to the northern part of Nkhotakota and the area on the northeastern tip of Lake Malawi were identified as areas of high primary productivity and therefore potential fishing grounds. These areas generally exhibit persistent cool surface waters, indicative of upwelling;and have relatively abundant phytoplankton.展开更多
Albino mutants are useful genetic resource for studying chlorophyll biosynthesis and chloroplast development and cloning genes involved in these processes in plants. Here we report a novel rice mutant low temperature ...Albino mutants are useful genetic resource for studying chlorophyll biosynthesis and chloroplast development and cloning genes involved in these processes in plants. Here we report a novel rice mutant low temperature albino I (ltal) that showed albino leaves before 4-leaf stage when grown under temperature lower than 20℃, but developed normal green leaves under temperature higher than 24℃ or similar morphological phenotypes in dark as did the wild-type (WT). Our analysis showed that the contents of chlorophylls and chlo- rophyll precursors were remarkably decreased in the Ital mutant under low temperature compared to WT. Transmission electron microscope observation revealed that chloroplasts were defectively developed in the albino ltal leaves, which lacked of well-stacked granum and contained less stroma lamellae. These results suggested that the ltal mutation may delay the light-induced thylakoid assembly under low temperature. Genetic analysis indicated that the albino phenotype was controlled by a single recessive locus. Through map-based approach, we finally located the Ltal gene to a region of 40.3 kb on the short arm of chromosome 11. There are 8 predicted open reading frames (ORFs) in this region and two of them were deleted in ltal genome compared with the WT genome. The further characterization of the Ltal gene would provide a good approach to uncover the novel molecular mechanisms involved in chloroplast development under low temperature stress.展开更多
基金supported by the National Basic Research Program of China(2009CB118400)the Earmarked Fund for Modern Agro-Industry Technology Research System,China(nycytx-004)
文摘The insensitive response to photoperiod and temperature is an important quantitative trait for soybean in wide adaptation breeding. The natural variation in response to photoperiod and temperature was detected using 275 accessions of soybean [Glycine max (L.) Merrill] from China. Genome-wide association mapping, based on population structure analysis, was carried out using 118 SSR markers by the TASSEL GLM (general linear model) program. Nine SSR markers (P〈0.01) were associated with the value of the response to photoperiod and temperature (VRPT) caused by days to flowering (DF), among which, Satt308 (LG M), Sattl50 (LG M) and Satt440 (LG l), were identified in both 2006 and 2007. Twelve SSR markers (P〈0.01) were associated with VRPT caused by days to maturity (DM), among which three markers, Satt387 (LG N), Satt307 (LG C2) and AW310961 (LG J), were detected in both 2006 and 2007. In addition, a total of 20 elite alleles were screened out over 2006 and 2007 for being associated with an insensitive response to photoperiod and temperature (IRPT) caused by DF and a total of seven different elite alleles were screened out for being associated with IRPT caused by DM. Among these elite alleles, five alleles, Satt150-244, Satt308-164, Satt308-206, Satt440-176, and Satt440-206, were associated with IRPT caused by DF and were identified in both years, but only one allele, Satt307-170, was identified as being associated with an IRPT caused by DM. Based on these elite alleles, a set of typical accessions were screened out. The result about the genetic basis of IRPT is meaningful for soybean wide adaption breeding.
文摘In terms of 34-year monthly mean temperature series in 1946-1979,the multi-level maPPing model of neural netWork BP type was applied to calculate the system's fractual dimension Do=2'8,leading tO a three-level model of this type with ixj=3x2,k=l,and the 1980 monthly mean temperture predichon on a long-t6rm basis were prepared by steadily modifying the weighting coefficient,making for the correlation coefficient of 97% with the measurements.Furthermore,the weighhng parameter was modified for each month of 1980 by means of observations,therefore constrcuhng monthly mean temperature forecasts from January to December of the year,reaching the correlation of 99.9% with the measurements.Likewise,the resulting 1981 monthly predictions on a long-range basis with 1946-1980 corresponding records yielded the correlahon of 98% and the month-tO month forecasts of 99.4%.
基金support of the 111 Project from the Ministryof Education of China(B07049)the Key Technologies R&D Program of China during the 11th Five-Year Plan period(2006BAD08A05)the project of Toxicity Variation of Wheat Stripe Rust Pathogen and Demonstration of Integrated Management of Stripe Rust,China(200903035-02)are thankfully acknowledged
文摘Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. The winter wheat cultivar Lantian 1 has high-temperature resistance to stripe rust. To determing the gene(s) for the stripe rust resistance, Lantian 1 was crossed with Mingxian 169 (M169). Seedlings of the parents, and F 1 , F 2 and F 2-3 progenies were tested with races CYR32 of Pst under controlled greenhouse conditions. Lantian 1 has a single partially dominant gene conferred resistance to race CYR32, designated as YrLT1. Simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrLT1. A linkage group of five SSR markers was constructed for YrLT1 using 166 F 2 plants. Based on the SSR marker consensus map and the position on wheat chromosome, the resistance gene was assigned on chromosome 2DL. Amplification of a set of nulli-tetrasomic Chinese Spring lines with SSR marker Xwmc797 confirmed that the resistance gene was located on the long arm of chromosome 2D. Because of its chromosomal location and the high-temperature resistance, this gene is different from previously described genes. The molecular map spanned 29.9 cM, and the genetic distance of two close markers Xbarc228 and Xcfd16 to resistance gene locus was 4.0 and 5.7 cM, respectively. The polymorphism rates of the flanking markers in 46 wheat lines were 2.1 and 2.1%, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 97.9% of tested genotypes. This new gene and flanking markers should be useful in developing wheat cultivars with high level and possible durable resistance to stripe rust.
文摘Analytical thermal traveling-wave distribution in biological tissues through a bio-heat transfer (BHT) model with linear/quadratic temperature-dependent blood perfusion is discussed in this paper. Using the extended generalized Riccati equation mapping method, we find analytical traveling wave solutions of the considered BHT equation. All the travelling wave solutions obtained have been used to explicitly investigate the effect of linear and quadratic coefficients of temperature dependence on temperature distribution in tissues. We found that the parameter of the nonlinear superposition formula for Riccati can be used to control the temperature of living tissues. Our results prove that the extended generalized Riccati equation mapping method is a powerful tool for investigating thermal traveling-wave distribution in biological tissues.
基金Project (51005112) supported by the National Natural Science Foundation of ChinaProject (2010ZF56019) supported by the Aviation Science Foundation of China+1 种基金Project (GJJ11156) supported by the Education Commission of Jiangxi Province, ChinaProject(GF200901008) supported by the Open Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, China
文摘The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results.
文摘Seasonal interaction between sea-surface temperature (SST) in the tropical eastern Pacific and ozone layer in Northern Hemisphere, ahd the layer,s teleconnection spatial structure caused by SST effeets, for January and July, are statistically analysed. The result indicates that the areas spacially correlated between SST and ozone layer in January greatly differ from the ones in July and they show opposite tendency in the signs of correlation, so do the teleconnection pattern for the ozone lay6r due to effects of SST in different seasons. In addition, persistent' influence of SST on the ozone layer results insuperposition of seasonal SST effects on the layer and makes it characteristic of well-defined wavetrainsin responses to SST. It is concluded that SST in the tropical eastern Pacific is of great importance to thenorthern ozone layer distribution and its seasonal evolution.
文摘We consider the one-dimensional bio-heat transfer equation with quadratic temperature-dependent blood perfusion, which governs the temperature distribution inside biological tissues. Using an extended mapping method with symbolic computation, we obtain the exact analytical thermal traveling wave solution, which describes the non-uniform temperature distribution inside the bodies. The found exact solution is used to investigate the temperature distribution in the tissues. It is found that the surrounding medium with higher temperature does not necessarily imply that the tissue will quickly (after a short duration of heating process) reach the desired temperature. It is also found that increased perfusion causes a decline in local temperature.
文摘This paper discusses a procedure that was developed to delineate potential fishing grounds in Lake Malawi using data on chlorophyll-a concentration derived from Moderate-resolution Imaging Spectroradiometer (MODIS/AQUA) in combination with lake surface temperature (LST) data obtained from Advanced Very High Resolution Radiometer (AVHRR) and MODIS/Terra satellite sensors. The paper draws from findings of studies [1,2] on development of algorithms for estimating chlorophyll-a and lake surface temperature in Lake Malawi from satellite imagery, respectively. To estimate chlorophyll concentration (a proxy for phytoplankton) in Lake Malawi using data from MODIS satellite imagery, in situ measurements of chlorophyll concentration were conducted at three selected sampling stations over the southeastern arm of Lake Malawi concurrent with satellite image acquisitions. These were regressed on chlorophyll-a concentration values obtained from Ocean Color (MODIS/AQUA) Data using SeaWIFS Data Analysis System (SeaDAS) software. From this, an equation for estimating chlorophyll-a concentration in Lake Malawi from MODIS satellite imagery was developed and used for mapping the spatial distribution of chlorophyll-a concentration in the lake. Since Lake Malawi is an oligotrophic lake, with an average value of chlorophyll concentration of 1 μg/L, areas in the lake with relatively high chlorophyll-a concentration were identified as potential locations for the development of the fishery industry. Estimation of lake surface temperature using satellite imagery involved two main activities. Firstly, in situ measurements of lake surface temperature were conducted at the three selected sampling stations over Lake Malawi concurrent with satellite image acquisitions. The second activity involved downloading and processing AVHRR and MODIS/Terra satellite imagery. AVHRR data covered the period September 1997 to February 1998 whereas MODIS/Terra data covered the period May to November, 2006. Both MODIS Land Surface Temperature (MOD11A1) and Ocean Color Sea Surface Temperature (SST) were downloaded from EOS Gateway website and processed into lake surface temperature. Two glass thermometers were used to measure temperature directly from the lake surface at a depth of 0 - 7.0 cm (i.e., skin temperature) and the average of the two readings was recorded as the lake surface temperature at a particular sampling station. Observed temperatures were regressed on remotely sensed data. ER Mapper was employed in drawing maps showing the distribution of lake surface temperature using the regression equation that was developed. Upwelling and downwelling zones were demarcated from lake surface temperature maps. Upwelling zones were identified as areas with a high potential for the development of the fishery industry because of their association with primary productivity. Using a simple overlay technique, data from both the spatial and temporal distribution of chlorophyll-a and lake surface temperature were used to delineate potential fishing grounds in Lake Malawi. The zone extending from Salima up to the northern part of Nkhotakota and the area on the northeastern tip of Lake Malawi were identified as areas of high primary productivity and therefore potential fishing grounds. These areas generally exhibit persistent cool surface waters, indicative of upwelling;and have relatively abundant phytoplankton.
基金supported by the grants from the National Basic Research Program of China(No.2009CB119000)the Ministry of Agriculture of China for Transgenic Research (Nos.2011ZX08009-003,2011ZX08001-005)the National Science Foundation of China(Nos.31000094,30970246, 31100188 and 31161130533)
文摘Albino mutants are useful genetic resource for studying chlorophyll biosynthesis and chloroplast development and cloning genes involved in these processes in plants. Here we report a novel rice mutant low temperature albino I (ltal) that showed albino leaves before 4-leaf stage when grown under temperature lower than 20℃, but developed normal green leaves under temperature higher than 24℃ or similar morphological phenotypes in dark as did the wild-type (WT). Our analysis showed that the contents of chlorophylls and chlo- rophyll precursors were remarkably decreased in the Ital mutant under low temperature compared to WT. Transmission electron microscope observation revealed that chloroplasts were defectively developed in the albino ltal leaves, which lacked of well-stacked granum and contained less stroma lamellae. These results suggested that the ltal mutation may delay the light-induced thylakoid assembly under low temperature. Genetic analysis indicated that the albino phenotype was controlled by a single recessive locus. Through map-based approach, we finally located the Ltal gene to a region of 40.3 kb on the short arm of chromosome 11. There are 8 predicted open reading frames (ORFs) in this region and two of them were deleted in ltal genome compared with the WT genome. The further characterization of the Ltal gene would provide a good approach to uncover the novel molecular mechanisms involved in chloroplast development under low temperature stress.