Termite (Macrotermes spp.) mounds are complex biological habitats originated by the termite activity and possessing peculiar physical, chemical and biochemical properties. In this study we examined the concentration...Termite (Macrotermes spp.) mounds are complex biological habitats originated by the termite activity and possessing peculiar physical, chemical and biochemical properties. In this study we examined the concentration of nutrients and the biochemical activity of abandoned soil and mounds colonized by termites of the genera Macroterrnes located in the Borana District, Ethiopia. To elucidate the magnitude and persistence of the termite-induced effects, we also studied an abandoned mound, previously colonized by termites of the same genera formed on the same soil. Results confirmed that termite-colonized mounds are 'hot spots' of nutrient concentration and microbial activity in tropical soils. This is due to the termite driven litter input and decomposition. The abandoned mounds showed higher microbial biomass and activity and displayed a nutrient redistribution and a greater microbial activity than the adjacent soils. These findings allowed us to hypothesize a model of nutrient cycling in colonized soils and a partition of the relative roles of termites and soil microorganisms in nutrient location and turnover in tropical soils. These results may be also useful for the optimal management of termite-colonized soils.展开更多
基金Supported by the Ente Cassa di Risparmio di Firenze,Italy(No.20090401)
文摘Termite (Macrotermes spp.) mounds are complex biological habitats originated by the termite activity and possessing peculiar physical, chemical and biochemical properties. In this study we examined the concentration of nutrients and the biochemical activity of abandoned soil and mounds colonized by termites of the genera Macroterrnes located in the Borana District, Ethiopia. To elucidate the magnitude and persistence of the termite-induced effects, we also studied an abandoned mound, previously colonized by termites of the same genera formed on the same soil. Results confirmed that termite-colonized mounds are 'hot spots' of nutrient concentration and microbial activity in tropical soils. This is due to the termite driven litter input and decomposition. The abandoned mounds showed higher microbial biomass and activity and displayed a nutrient redistribution and a greater microbial activity than the adjacent soils. These findings allowed us to hypothesize a model of nutrient cycling in colonized soils and a partition of the relative roles of termites and soil microorganisms in nutrient location and turnover in tropical soils. These results may be also useful for the optimal management of termite-colonized soils.