Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with rand...Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors.However,in many geodetic applications,some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix.It is called the linear structured EIV(LSEIV)model.Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications.On the one hand,the functional part of the LSEIV model is modified into the errors-in-observations(EIO)model.On the other hand,the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix.The algorithms are derived through the Lagrange multipliers method and linear approximation.The estimation principles and iterative formula of the parameters are proven to be consistent.The first-order approximate variance-covariance matrix(VCM)of the parameters is also derived.A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach.Afterwards,the least squares(LS),total least squares(TLS)and linear structured weighted total least squares(LSWTLS)solutions are compared and the accuracy evaluation formula is proven to be feasible and effective.Finally,the LSWTLS is applied to the field of deformation analysis,which yields a better result than the traditional LS and TLS estimations.展开更多
The liver is the site of synthesis of the majority of circulating proteins.Besides initial polypeptide synthesis,sophisticated machinery is involved in the further processing of proteins by removing parts of them and/...The liver is the site of synthesis of the majority of circulating proteins.Besides initial polypeptide synthesis,sophisticated machinery is involved in the further processing of proteins by removing parts of them and/or adding functional groups and small molecules tailoring the final molecule to suit its physiological purpose.Posttranslational modifications(PTMs)design a network of molecules with the common protein ancestor but with slightly or considerably varying activity/localization/purpose.PTMs can change under pathological conditions,giving rise to aberrant or overmodified proteins.Undesired changes in the structure of proteins most often accompany undesired changes in their function,such as reduced activity or the appearance of new effects.Proper protein processing is essential for the reactions in living beings and crucial for the overall quality control.Modifications that occur on proteins synthesized in the liver whose PTMs are cirrhosis-related are oxidation,nitration,glycosylation,acetylation,and ubiquitination.Some of them predominantly affect proteins that remain in liver cells,whereas others predominantly occur on proteins that leave the liver or originate from other tissues and perform their function in the circulation.Altered PTMs of certain proteins are potential candidates as biomarkers of liver-related diseases,including cirrhosis.This review will focus on PTMs on proteins whose structural changes in cirrhosis exert or are suspected to exert the most serious functional consequences.展开更多
As the need for high-energy–density batteries continues to grow, lithium-sulfur(Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density com...As the need for high-energy–density batteries continues to grow, lithium-sulfur(Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li–S batteries has been ongoing for over two decades, leading to a significant number of publications and patents.However, the commercialization of Li–S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li–S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li–S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li–S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject.展开更多
In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional t...In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional theory(DFT)in sodium-ion battery(SIB)research to refine the atomic arrangements and crystal lattices and introduce substitutions and dopants.These changes affect the lattice stability,intercalation,electronic and ionic conductivities,and electrochemical performance.We unraveled the intricate structure-electrochemical behavior relationship by combining experimental data with computational models,including first-principles calculations.This holistic approach identified techniques for optimizing PB and Prussian blue analog(PBA)structu ral properties for SIBs.We also discuss the tuning of electrolytes by systematically adjusting their composition,concentration,and additives using a combination of molecular dynamics(MD)simulations and DFT computations.Our review offers a comprehensive assessment of strategies for enhancing the electrochemical properties of PB and PBAs through structural engineering and electrolyte modifications,combining experimental insights with advanced computational simulations,and paving the way for next-generation energy storage systems.展开更多
Ion channels,as membrane proteins,are the sensors of the cell.They act as the first line of communication with the world beyond the plasma membrane and transduce changes in the external and internal environments into ...Ion channels,as membrane proteins,are the sensors of the cell.They act as the first line of communication with the world beyond the plasma membrane and transduce changes in the external and internal environments into unique electrical signals to shape the responses of excitable cells.Because of their importance in cellular communication,ion channels have been intensively studied at the structural and functional levels.Here,we summarize the diverse approaches,including molecular and cellular,chemical,optical,biophysical,and computational,used to probe the structural and functional rearrangements that occur during channel activation(or sensitization),inactivation(or desensitization),and various forms of modulation.The emerging insights into the structure and function of ion channels by multidisciplinary approaches allow the development of new pharmacotherapies as well as new tools useful in controlling cellular activity.展开更多
In accordance with previous reports, the sequences related to phosporylated protein segments occur in conserved variable domains of immunoglobulins including first of all certain N-terminally located segments. Consequ...In accordance with previous reports, the sequences related to phosporylated protein segments occur in conserved variable domains of immunoglobulins including first of all certain N-terminally located segments. Consequently, we look here for the sequences 1) composing human and mouse proteins different from antigen receptors, 2) identical with or highly similar to nucleotide sequence representatives of conserved variable immunoglobulin segments and 3) identical with or closely related to phosphorylation sites. More precisely, we searched for the corresponding actual pairs of DNA and protein sequence segments using five-step bilingual approach employing among others a) different types of BLAST searches, b) two in-principle-different machine-learning methods predicting phosphorylated sites and c) two large databases recording existing phosphorylation sites. The approach identified seven existing phosphorylation sites and thirty-seven related human and mouse segments achieving limits for several predictions or phylogenic parameters. Mostly serines phosporylated with ataxia-telangiectasia-related kinase (involved in regulation of DNA-double-strand-break repair) were indicated or predicted in this study. Hypermutation motifs, located in effective positions of the selected sequence segments, occurred significantly less frequently in transcribed than non-transcribed DNA strands suggesting thus the incidence of mutation events. In addition, marked differences between the numbers and proportions of human and mouse cancer-related sequence items were found in different steps of selection process. The possible role of hypermutation changes within the selected segments and the observed structural relationships are discussed here with respect to DNA damage, carcinogenesis, cancer vaccination, ageing and evolution. Taken together, our data represent additional and sometimes perhaps complementary information to the existing databases of empirically proven phosphorylation sites or pathogenically important spots.展开更多
基金the financial support of the National Natural Science Foundation of China(Grant No.42074016,42104025,42274057and 41704007)Hunan Provincial Natural Science Foundation of China(Grant No.2021JJ30244)Scientific Research Fund of Hunan Provincial Education Department(Grant No.22B0496)。
文摘Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors.However,in many geodetic applications,some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix.It is called the linear structured EIV(LSEIV)model.Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications.On the one hand,the functional part of the LSEIV model is modified into the errors-in-observations(EIO)model.On the other hand,the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix.The algorithms are derived through the Lagrange multipliers method and linear approximation.The estimation principles and iterative formula of the parameters are proven to be consistent.The first-order approximate variance-covariance matrix(VCM)of the parameters is also derived.A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach.Afterwards,the least squares(LS),total least squares(TLS)and linear structured weighted total least squares(LSWTLS)solutions are compared and the accuracy evaluation formula is proven to be feasible and effective.Finally,the LSWTLS is applied to the field of deformation analysis,which yields a better result than the traditional LS and TLS estimations.
基金Supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia,No.451-03-9/2021-14/200019.
文摘The liver is the site of synthesis of the majority of circulating proteins.Besides initial polypeptide synthesis,sophisticated machinery is involved in the further processing of proteins by removing parts of them and/or adding functional groups and small molecules tailoring the final molecule to suit its physiological purpose.Posttranslational modifications(PTMs)design a network of molecules with the common protein ancestor but with slightly or considerably varying activity/localization/purpose.PTMs can change under pathological conditions,giving rise to aberrant or overmodified proteins.Undesired changes in the structure of proteins most often accompany undesired changes in their function,such as reduced activity or the appearance of new effects.Proper protein processing is essential for the reactions in living beings and crucial for the overall quality control.Modifications that occur on proteins synthesized in the liver whose PTMs are cirrhosis-related are oxidation,nitration,glycosylation,acetylation,and ubiquitination.Some of them predominantly affect proteins that remain in liver cells,whereas others predominantly occur on proteins that leave the liver or originate from other tissues and perform their function in the circulation.Altered PTMs of certain proteins are potential candidates as biomarkers of liver-related diseases,including cirrhosis.This review will focus on PTMs on proteins whose structural changes in cirrhosis exert or are suspected to exert the most serious functional consequences.
基金support from EPSRC-New Investigator Award 2020 (EP/V002260/1)The Faraday Institute-Battery Study and Seed Research Project (FIRG052)+2 种基金The Royal Society-International Exchanges 2021 Cost Share (NSFC)(IECNSFC211074)the China Scholarship Council (CSC, No. 201806130168)the International Postdoctoral Exchange Fellowship Program (Grant No. PC2022020)
文摘As the need for high-energy–density batteries continues to grow, lithium-sulfur(Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li–S batteries has been ongoing for over two decades, leading to a significant number of publications and patents.However, the commercialization of Li–S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li–S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li–S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li–S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2022R1C1C1011058)。
文摘In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional theory(DFT)in sodium-ion battery(SIB)research to refine the atomic arrangements and crystal lattices and introduce substitutions and dopants.These changes affect the lattice stability,intercalation,electronic and ionic conductivities,and electrochemical performance.We unraveled the intricate structure-electrochemical behavior relationship by combining experimental data with computational models,including first-principles calculations.This holistic approach identified techniques for optimizing PB and Prussian blue analog(PBA)structu ral properties for SIBs.We also discuss the tuning of electrolytes by systematically adjusting their composition,concentration,and additives using a combination of molecular dynamics(MD)simulations and DFT computations.Our review offers a comprehensive assessment of strategies for enhancing the electrochemical properties of PB and PBAs through structural engineering and electrolyte modifications,combining experimental insights with advanced computational simulations,and paving the way for next-generation energy storage systems.
基金supported by grants from the National Natural Science Foundation of China(91132303,30830035)the National Basic Research Development Program of China (2011CBA00408)the China Postdoctoral Science Foundation(2012M511105)
文摘Ion channels,as membrane proteins,are the sensors of the cell.They act as the first line of communication with the world beyond the plasma membrane and transduce changes in the external and internal environments into unique electrical signals to shape the responses of excitable cells.Because of their importance in cellular communication,ion channels have been intensively studied at the structural and functional levels.Here,we summarize the diverse approaches,including molecular and cellular,chemical,optical,biophysical,and computational,used to probe the structural and functional rearrangements that occur during channel activation(or sensitization),inactivation(or desensitization),and various forms of modulation.The emerging insights into the structure and function of ion channels by multidisciplinary approaches allow the development of new pharmacotherapies as well as new tools useful in controlling cellular activity.
文摘In accordance with previous reports, the sequences related to phosporylated protein segments occur in conserved variable domains of immunoglobulins including first of all certain N-terminally located segments. Consequently, we look here for the sequences 1) composing human and mouse proteins different from antigen receptors, 2) identical with or highly similar to nucleotide sequence representatives of conserved variable immunoglobulin segments and 3) identical with or closely related to phosphorylation sites. More precisely, we searched for the corresponding actual pairs of DNA and protein sequence segments using five-step bilingual approach employing among others a) different types of BLAST searches, b) two in-principle-different machine-learning methods predicting phosphorylated sites and c) two large databases recording existing phosphorylation sites. The approach identified seven existing phosphorylation sites and thirty-seven related human and mouse segments achieving limits for several predictions or phylogenic parameters. Mostly serines phosporylated with ataxia-telangiectasia-related kinase (involved in regulation of DNA-double-strand-break repair) were indicated or predicted in this study. Hypermutation motifs, located in effective positions of the selected sequence segments, occurred significantly less frequently in transcribed than non-transcribed DNA strands suggesting thus the incidence of mutation events. In addition, marked differences between the numbers and proportions of human and mouse cancer-related sequence items were found in different steps of selection process. The possible role of hypermutation changes within the selected segments and the observed structural relationships are discussed here with respect to DNA damage, carcinogenesis, cancer vaccination, ageing and evolution. Taken together, our data represent additional and sometimes perhaps complementary information to the existing databases of empirically proven phosphorylation sites or pathogenically important spots.