Twin vortices flow behavior with out-of-plane angle effect in double bent pipe system is studied numerically and experimentally. Double bent pipe system generates very complicated flow behavior including twin vortices...Twin vortices flow behavior with out-of-plane angle effect in double bent pipe system is studied numerically and experimentally. Double bent pipe system generates very complicated flow behavior including twin vortices in the downstream of the double bent. Moreover, angle from the plane of the double bent forms more complicated flow behavior due to the flow twist by out-of-plane angle. In this study, numerical analysis is examined for this double bent system using three-dimensional CFD code, FLUENT, to reproduce those complicated flow behaviors with twin vortices. Numerical results are compared with experimental results obtained by Ultrasonic Velocity Profiler (UVP). Discrepancy between numerical and experimental result is discussed changing out-of- plane angle, α. Velocity profiles obtained by numerical results are converted into UVP profiles, and they are compared with the experimental results by UVP. Consequently, velocity behavior especially around the pipe wall obtained by numerical results is agreed with experimental results.展开更多
A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the ...A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.展开更多
An ensemble optimal interpolation(EnOI)data assimilation method is applied in the BCCCSM1.1 to investigate the impact of ocean data assimilations on seasonal forecasts in an idealized twin experiment framework.Pseudoo...An ensemble optimal interpolation(EnOI)data assimilation method is applied in the BCCCSM1.1 to investigate the impact of ocean data assimilations on seasonal forecasts in an idealized twin experiment framework.Pseudoobservations of sea surface temperature(SST),sea surface height(SSH),sea surface salinity(SSS),temperature and salinity(T/S)profiles were first generated in a free model run.Then,a series of sensitivity tests initialized with predefined bias were conducted for a one-year period;this involved a free run(CTR)and seven assimilation runs.These tests allowed us to check the analysis field accuracy against the"truth".As expected,data assimilation improved all investigated quantities;the joint assimilation of all variables gave more improved results than assimilating them separately.One-year predictions initialized from the seven runs and CTR were then conducted and compared.The forecasts initialized from joint assimilation of surface data produced comparable SST root mean square errors to that from assimilation of T/S profiles,but the assimilation of T/S profiles is crucial to reduce subsurface deficiencies.The ocean surface currents in the tropics were better predicted when initial conditions produced by assimilating T/S profiles,while surface data assimilation became more important at higher latitudes,particularly near the western boundary currents.The predictions of ocean heat content and mixed layer depth are significantly improved initialized from the joint assimilation of all the variables.Finally,a central Pacific El Ni?o was well predicted from the joint assimilation of surface data,indicating the importance of joint assimilation of SST,SSH,and SSS for ENSO predictions.展开更多
文摘Twin vortices flow behavior with out-of-plane angle effect in double bent pipe system is studied numerically and experimentally. Double bent pipe system generates very complicated flow behavior including twin vortices in the downstream of the double bent. Moreover, angle from the plane of the double bent forms more complicated flow behavior due to the flow twist by out-of-plane angle. In this study, numerical analysis is examined for this double bent system using three-dimensional CFD code, FLUENT, to reproduce those complicated flow behaviors with twin vortices. Numerical results are compared with experimental results obtained by Ultrasonic Velocity Profiler (UVP). Discrepancy between numerical and experimental result is discussed changing out-of- plane angle, α. Velocity profiles obtained by numerical results are converted into UVP profiles, and they are compared with the experimental results by UVP. Consequently, velocity behavior especially around the pipe wall obtained by numerical results is agreed with experimental results.
基金supported by the National Natural Science Foundation of China(Grant Nos.41490644,41475101 and 41421005)the CAS Strategic Priority Project(the Western Pacific Ocean System+2 种基金Project Nos.XDA11010105,XDA11020306 and XDA11010301)the NSFC-Shandong Joint Fund for Marine Science Research Centers(Grant No.U1406401)the NSFC Innovative Group Grant(Project No.41421005)
文摘A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.
基金The National Key Research and Development Program of China under contract Nos 2016YFA0602102 and2016YFC1401702the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)under contract No.GML2019ZD0306+1 种基金the National Natural Science Foundation of China under contract No.41306005CAS Pioneer Hundred Talents Program Startup Fund by South China Sea Institute of Oceanology under contract No.Y9SL011001。
文摘An ensemble optimal interpolation(EnOI)data assimilation method is applied in the BCCCSM1.1 to investigate the impact of ocean data assimilations on seasonal forecasts in an idealized twin experiment framework.Pseudoobservations of sea surface temperature(SST),sea surface height(SSH),sea surface salinity(SSS),temperature and salinity(T/S)profiles were first generated in a free model run.Then,a series of sensitivity tests initialized with predefined bias were conducted for a one-year period;this involved a free run(CTR)and seven assimilation runs.These tests allowed us to check the analysis field accuracy against the"truth".As expected,data assimilation improved all investigated quantities;the joint assimilation of all variables gave more improved results than assimilating them separately.One-year predictions initialized from the seven runs and CTR were then conducted and compared.The forecasts initialized from joint assimilation of surface data produced comparable SST root mean square errors to that from assimilation of T/S profiles,but the assimilation of T/S profiles is crucial to reduce subsurface deficiencies.The ocean surface currents in the tropics were better predicted when initial conditions produced by assimilating T/S profiles,while surface data assimilation became more important at higher latitudes,particularly near the western boundary currents.The predictions of ocean heat content and mixed layer depth are significantly improved initialized from the joint assimilation of all the variables.Finally,a central Pacific El Ni?o was well predicted from the joint assimilation of surface data,indicating the importance of joint assimilation of SST,SSH,and SSS for ENSO predictions.