A secondary twinning orientation relationship between A and B martensite variants in a CuZnAl shape memory alloy was confirmed under TEM observation.The twin plane, (50),is a linear combination of (8)and(1 0 10)planes...A secondary twinning orientation relationship between A and B martensite variants in a CuZnAl shape memory alloy was confirmed under TEM observation.The twin plane, (50),is a linear combination of (8)and(1 0 10)planes,which are twin planes of A:C and A:D type pair respectively.展开更多
Deformation twinning is profusely activated in the Mg alloys due to lower critical resolved shear stress(CRSS) compared to the non-basal slip systems(prismatic and pyramidal ) and plays a significant role in texture r...Deformation twinning is profusely activated in the Mg alloys due to lower critical resolved shear stress(CRSS) compared to the non-basal slip systems(prismatic and pyramidal ) and plays a significant role in texture reorientation, grain refinement and enhancement of mechanical performance. Twinning is a sequential process comprising twin nucleation, twin propagation and twin growth, hence several intrinsic and extrinsic parameters that facilitate or suppress the process have been critically reviewed. The dependence of twinning on the grain size, deformation temperature, favorable grain orientation and shear strain have been thoroughly discussed in the context of published literature and an attempt has been made to provide a benchmark conclusive finding based on the majority of works. Furthermore, the subsequent effect of twinning on the mechanical performance of Mg alloys, including ductility, formability and tension-compression asymmetry has been discussed in detail. Lastly, the stability of twins, including stress and thermal stability, is summarized and critical issues related to pertinent bottlenecks have been addressed.展开更多
The effect of rolling reduction of the last pass on the dislocation slip and twinning behavior during direct hot rolling of a cast WE43 magnesium alloy at 480℃ was investigated.The results showed that prismatic<...The effect of rolling reduction of the last pass on the dislocation slip and twinning behavior during direct hot rolling of a cast WE43 magnesium alloy at 480℃ was investigated.The results showed that prismatic<á>slip was always the main deformation mode during rolling at 480℃.In addition,the activated twinning type was associated with rolling reduction.The{1012}extension twinning was activated at a slight rolling reduction(2%),while{1011}compression twinning and{1011}−{1012}double twinning were activated at larger rolling reduction(12%and 20%).Schmid factor calculation showed that the activation of{1012}extension twin variants followed the Schmid Law,whereas the activation of{1011}compression twin variants did not follow it.Even if the rolling reduction reached 20%,almost no dynamic recrystallization(DRX)grains were found,presumably because the amount of deformation required for DRX to occur was not reached.展开更多
This study investigates the influence of CaO(0.5,1(wt.%))alloying on the microstructural evolution,texture development and deformation behavior of AZ61 magnesium alloy.The uniaxial tension tests at room(RT)and cryogen...This study investigates the influence of CaO(0.5,1(wt.%))alloying on the microstructural evolution,texture development and deformation behavior of AZ61 magnesium alloy.The uniaxial tension tests at room(RT)and cryogenic(CT,-150℃)temperature were performed to investigate the twinability and dislocation behavior and its consequent effect on flow stress,ductility and strain hardening rate.The results showed that the AZ61-1CaO exhibited superior strength/ductility synergy at RT with a yield strength(YS)of 223 MPa and a ductility of 23% as compared to AZ61(178 MPa,18.5%)and AZ61-0.5CaO(198 MPa,21%).Similar trend was witnessed for all the samples during CT deformation,where increase in the YS and decrease in ductility were observed.The Mtex tools based in-grain misorientation axis(IGMA)analysis of RT deformed samples revealed the higher activities of prismatic slip in AZ61-CaO,which led to superior ductility.Moreover,subsequent EBSD analysis of CT deformed samples showed the increased fraction of fine{10-12}tension twins and nucleation of multiple{10-12}twin variants caused by higher local stress concentration at the grain boundaries,which imposed the strengthening by twin-twin interaction.Lastly,the detailed investigations on strengthening contributors showed that the dislocation strengthening has the highest contribution towards strength in all samples.展开更多
The influence of Y content on the grain-scale twinning behavior in extruded Mg−xY(x=0.5,1,5,wt.%)sheets under uniaxial tension and compression along the extruded direction was statistically investigated.An automatic t...The influence of Y content on the grain-scale twinning behavior in extruded Mg−xY(x=0.5,1,5,wt.%)sheets under uniaxial tension and compression along the extruded direction was statistically investigated.An automatic twin variant analysis was employed,based on large data sets obtained by electron backscatter diffraction(EBSD),including 2691 grains with 977 twins.The{1012}tension twinning(TTW)dominance and prevailing anomalous twinning behavior(Schmid factor(m)<0)under both tension and compression were found.The anomalous twinning behavior was more pronounced as Y content increased under tensile loading,indicating a promoted stochasticity of twin variant selection for more concentrated Mg−Y alloys.However,the trend for the Y-content dependent anomalous twinning behavior was opposite in compression.The fractions of the anomalous TTWs were found to be well correlated with the maximum Schmid factor(m_(max))values of basal slip and prismatic slip in the corresponding parent grains for compression and tension,respectively,indicating that twinning and dislocation slip might be closely related in the present Mg−Y alloys.展开更多
We investigated the asymmetric tension-compression(T-C)behavior of ZA21 bars with bimodal and uniform structures through axial tension and compression tests.The results show that the yield strengths of bars having bim...We investigated the asymmetric tension-compression(T-C)behavior of ZA21 bars with bimodal and uniform structures through axial tension and compression tests.The results show that the yield strengths of bars having bimodal structure are 206.42 and 140.28 MPa under tension and compression,respectively,which are higher than those of bars having uniform structure with tensile and compressive yield strength of 183.71 and 102.86 MPa,respectively.Prismatic slip and extension twinning under tension and basal slip and extension twinning under compression dominate the yield behavior and induce the T-C asymmetry.However,due to the basal slip activated in fine grains under tension and the inhibition of extension twinning by fine grains under compression,the bimodal structure possesses a lower T-C asymmetry(0.68)compared to the uniform structure(0.56).Multiple extension twins occur during deformation,and the selection of twin variants depends on the Schmid factor of the six variants activated by parent grains.Furthermore,the strengthening effect of the bimodal structure depends on the grain size and the ratio of coarse and fine grains.展开更多
Twinned substructure in lath martensite was induced in the interstitial free(IF)steel via a high pressure thermal cycle(heating up to 1100℃and holding for 30 min,cooling at 10℃/s to room temperature under a pressure...Twinned substructure in lath martensite was induced in the interstitial free(IF)steel via a high pressure thermal cycle(heating up to 1100℃and holding for 30 min,cooling at 10℃/s to room temperature under a pressure of 4 GPa).Experimental observations and theoretical simulation confrm that the twinned substructure has the origin related to the twinned variants rather than the bcc{112}<111>twins,while extra difraction spots were caused by crystal overlapping rather than any extra phase.The diferences in crystallography and electron difraction behavior between twinned variants and{112}<111>twins were discussed in detail.展开更多
To investigate the deformation twinning and the plastic anisotropy of the hexagonal-close-packed(HCP) single crystal, the crystal plastic constitutive model including slip and twinning deformation was established wi...To investigate the deformation twinning and the plastic anisotropy of the hexagonal-close-packed(HCP) single crystal, the crystal plastic constitutive model including slip and twinning deformation was established with finite element method based on crystal plasticity theory. The model was verified by test data. Newton-Raphson iteration method was developed with the stress components directly as the basic variables of iteration. The plastic deformation behavior of single crystal AZ31 alloy was analyzed numerically under monotonic tension and compression, respectively, in four different strain paths(i.e. along 〈2110〉, 〈 0110〉, 〈0001〉 and 〈0111〉) with this model. The stress-strain curves were obtained in the above paths. The numerical calculation results show that this crystal model is feasible to predict the activity of slip/twinning system and to describe the number of active twin variants, the types of dominant twin variants and twin intersection. Due to the polar nature of mechanical twinning in inelastic deformation of the material, the plastic behavior of the single crystal material is demonstrated to be notably anisotropic and high asymmetry.展开更多
Deformation twinning serves as an important mode of plastic dissipation processes in nanoscale body-centered cubic(BCC)metals,but its origin and spatio-temporal features are mysterious.Here,applying in situ tensile ex...Deformation twinning serves as an important mode of plastic dissipation processes in nanoscale body-centered cubic(BCC)metals,but its origin and spatio-temporal features are mysterious.Here,applying in situ tensile experiments,we report a strong size effect on mediating the twinning behaviors and twin boundary(TB)-dislocation interaction mechanisms in BCC iron(Fe)nanowires(NWs).There exists a critical diameter(d)of∼2.5 nm,above which the deformation twinning rather than dislocation slip dominates the plasticity.Unlike the traditional reflection TBs,the intermediate isosceles TBs are consis-tently observed as mediated by the 1/12<111>partial dislocations.Moreover,we uncover two distinct TB-related deformation mechanisms,including twin variant re-orientation and TB cracking for NWs with d<17 nm and d>17 nm,respectively.Further molecular dynamics and statics simulations provide the basic underlying mechanisms for size-dependent plasticity,which have been largely overlooked in previous experimental investigations.Our findings highlight the importance of grain size in mediating the deformation behaviors in Fe,serving as possible guidance for exploring single-crystalline and poly-crystalline Fe-based materials(e.g.steel)with optimized mechanical performance.展开更多
文摘A secondary twinning orientation relationship between A and B martensite variants in a CuZnAl shape memory alloy was confirmed under TEM observation.The twin plane, (50),is a linear combination of (8)and(1 0 10)planes,which are twin planes of A:C and A:D type pair respectively.
基金supported by the National Research Foundation of Korea (NRF)grant funded by the Korean government (MSIT) (No.2020R1C1C1004434)。
文摘Deformation twinning is profusely activated in the Mg alloys due to lower critical resolved shear stress(CRSS) compared to the non-basal slip systems(prismatic and pyramidal ) and plays a significant role in texture reorientation, grain refinement and enhancement of mechanical performance. Twinning is a sequential process comprising twin nucleation, twin propagation and twin growth, hence several intrinsic and extrinsic parameters that facilitate or suppress the process have been critically reviewed. The dependence of twinning on the grain size, deformation temperature, favorable grain orientation and shear strain have been thoroughly discussed in the context of published literature and an attempt has been made to provide a benchmark conclusive finding based on the majority of works. Furthermore, the subsequent effect of twinning on the mechanical performance of Mg alloys, including ductility, formability and tension-compression asymmetry has been discussed in detail. Lastly, the stability of twins, including stress and thermal stability, is summarized and critical issues related to pertinent bottlenecks have been addressed.
基金financially supported by the Natural Science Foundation of Liaoning Province, China (No. 2020-MS-004)the National Natural Science Foundation of China (Nos. 51601193, 51701218)+1 种基金the National Key Research and Development Program of China (No. 2016YFB0301104)the State Key Program of National Natural Science of China (No. 51531002)。
文摘The effect of rolling reduction of the last pass on the dislocation slip and twinning behavior during direct hot rolling of a cast WE43 magnesium alloy at 480℃ was investigated.The results showed that prismatic<á>slip was always the main deformation mode during rolling at 480℃.In addition,the activated twinning type was associated with rolling reduction.The{1012}extension twinning was activated at a slight rolling reduction(2%),while{1011}compression twinning and{1011}−{1012}double twinning were activated at larger rolling reduction(12%and 20%).Schmid factor calculation showed that the activation of{1012}extension twin variants followed the Schmid Law,whereas the activation of{1011}compression twin variants did not follow it.Even if the rolling reduction reached 20%,almost no dynamic recrystallization(DRX)grains were found,presumably because the amount of deformation required for DRX to occur was not reached.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Korean government(MSIT)(No.2020R1C1C1004434 and No.RS-202400398068)Incheon National University Research Grant in 2022(2022-0120)。
文摘This study investigates the influence of CaO(0.5,1(wt.%))alloying on the microstructural evolution,texture development and deformation behavior of AZ61 magnesium alloy.The uniaxial tension tests at room(RT)and cryogenic(CT,-150℃)temperature were performed to investigate the twinability and dislocation behavior and its consequent effect on flow stress,ductility and strain hardening rate.The results showed that the AZ61-1CaO exhibited superior strength/ductility synergy at RT with a yield strength(YS)of 223 MPa and a ductility of 23% as compared to AZ61(178 MPa,18.5%)and AZ61-0.5CaO(198 MPa,21%).Similar trend was witnessed for all the samples during CT deformation,where increase in the YS and decrease in ductility were observed.The Mtex tools based in-grain misorientation axis(IGMA)analysis of RT deformed samples revealed the higher activities of prismatic slip in AZ61-CaO,which led to superior ductility.Moreover,subsequent EBSD analysis of CT deformed samples showed the increased fraction of fine{10-12}tension twins and nucleation of multiple{10-12}twin variants caused by higher local stress concentration at the grain boundaries,which imposed the strengthening by twin-twin interaction.Lastly,the detailed investigations on strengthening contributors showed that the dislocation strengthening has the highest contribution towards strength in all samples.
基金the National Natural Science Foundation of China(Nos.51401172 and 51601003)Fundamental Research Funds for the Central Universities,China(No.2682020ZT114)open funding of International Joint Laboratory for Light Alloys(MOE),Chongqing University,China。
文摘The influence of Y content on the grain-scale twinning behavior in extruded Mg−xY(x=0.5,1,5,wt.%)sheets under uniaxial tension and compression along the extruded direction was statistically investigated.An automatic twin variant analysis was employed,based on large data sets obtained by electron backscatter diffraction(EBSD),including 2691 grains with 977 twins.The{1012}tension twinning(TTW)dominance and prevailing anomalous twinning behavior(Schmid factor(m)<0)under both tension and compression were found.The anomalous twinning behavior was more pronounced as Y content increased under tensile loading,indicating a promoted stochasticity of twin variant selection for more concentrated Mg−Y alloys.However,the trend for the Y-content dependent anomalous twinning behavior was opposite in compression.The fractions of the anomalous TTWs were found to be well correlated with the maximum Schmid factor(m_(max))values of basal slip and prismatic slip in the corresponding parent grains for compression and tension,respectively,indicating that twinning and dislocation slip might be closely related in the present Mg−Y alloys.
基金financially supported by the National Natural Science Foundation of China (No. 52275305)the Fundamental Research Funds for the Central Universities (No. FRF-IC-20-10)the China Postdoctoral Science Foundation (No. 2021M700378)
文摘We investigated the asymmetric tension-compression(T-C)behavior of ZA21 bars with bimodal and uniform structures through axial tension and compression tests.The results show that the yield strengths of bars having bimodal structure are 206.42 and 140.28 MPa under tension and compression,respectively,which are higher than those of bars having uniform structure with tensile and compressive yield strength of 183.71 and 102.86 MPa,respectively.Prismatic slip and extension twinning under tension and basal slip and extension twinning under compression dominate the yield behavior and induce the T-C asymmetry.However,due to the basal slip activated in fine grains under tension and the inhibition of extension twinning by fine grains under compression,the bimodal structure possesses a lower T-C asymmetry(0.68)compared to the uniform structure(0.56).Multiple extension twins occur during deformation,and the selection of twin variants depends on the Schmid factor of the six variants activated by parent grains.Furthermore,the strengthening effect of the bimodal structure depends on the grain size and the ratio of coarse and fine grains.
基金supported by the National Natural Science Foundation of China(Nos.52171125,52071178)the Open Testing Funding of Large Instruments and Equipment of Southwest Jiaotong University,China(No.2022SRII-003)the Open Funding of International Joint Laboratory for Light Alloys(MOE),Chongqing University,China。
基金supported by the Natural Science Foundation-Steel and Iron Foundation of Hebei Province(No.E2021203051)the Hundred Outstanding Creative Talents Projects in Universities of Hebei Province,Chinathe Project Program of Heavy Machinery Collaborative Innovation Center,China.
文摘Twinned substructure in lath martensite was induced in the interstitial free(IF)steel via a high pressure thermal cycle(heating up to 1100℃and holding for 30 min,cooling at 10℃/s to room temperature under a pressure of 4 GPa).Experimental observations and theoretical simulation confrm that the twinned substructure has the origin related to the twinned variants rather than the bcc{112}<111>twins,while extra difraction spots were caused by crystal overlapping rather than any extra phase.The diferences in crystallography and electron difraction behavior between twinned variants and{112}<111>twins were discussed in detail.
基金Projects(11272094,11072064)supported by the National Natural Science Foundation of ChinaProject(LGZX201101)supported by the Laboratory Center of Guangxi Science and Technology,ChinaProject(1074023)supported by the Science Foundation of Guangxi University of Science&Technology,China
文摘To investigate the deformation twinning and the plastic anisotropy of the hexagonal-close-packed(HCP) single crystal, the crystal plastic constitutive model including slip and twinning deformation was established with finite element method based on crystal plasticity theory. The model was verified by test data. Newton-Raphson iteration method was developed with the stress components directly as the basic variables of iteration. The plastic deformation behavior of single crystal AZ31 alloy was analyzed numerically under monotonic tension and compression, respectively, in four different strain paths(i.e. along 〈2110〉, 〈 0110〉, 〈0001〉 and 〈0111〉) with this model. The stress-strain curves were obtained in the above paths. The numerical calculation results show that this crystal model is feasible to predict the activity of slip/twinning system and to describe the number of active twin variants, the types of dominant twin variants and twin intersection. Due to the polar nature of mechanical twinning in inelastic deformation of the material, the plastic behavior of the single crystal material is demonstrated to be notably anisotropic and high asymmetry.
基金supported by the National Natural Science Foundation of China (Nos.52071237,12074290,51871169,52101021,and 12104345)the Natural Science Foundation of Jiangsu Province (No.BK20191187)+1 种基金the Young Top-notch Talent Cultivation Program of Hubei Province,the Science and Technology Program of Shenzhen (No.JCYJ20190808150407522)the China Postdoctoral Science Foundation (No.2019M652685).
文摘Deformation twinning serves as an important mode of plastic dissipation processes in nanoscale body-centered cubic(BCC)metals,but its origin and spatio-temporal features are mysterious.Here,applying in situ tensile experiments,we report a strong size effect on mediating the twinning behaviors and twin boundary(TB)-dislocation interaction mechanisms in BCC iron(Fe)nanowires(NWs).There exists a critical diameter(d)of∼2.5 nm,above which the deformation twinning rather than dislocation slip dominates the plasticity.Unlike the traditional reflection TBs,the intermediate isosceles TBs are consis-tently observed as mediated by the 1/12<111>partial dislocations.Moreover,we uncover two distinct TB-related deformation mechanisms,including twin variant re-orientation and TB cracking for NWs with d<17 nm and d>17 nm,respectively.Further molecular dynamics and statics simulations provide the basic underlying mechanisms for size-dependent plasticity,which have been largely overlooked in previous experimental investigations.Our findings highlight the importance of grain size in mediating the deformation behaviors in Fe,serving as possible guidance for exploring single-crystalline and poly-crystalline Fe-based materials(e.g.steel)with optimized mechanical performance.