With thick plates of 2219 high-strength alloy, the microstructures of welded joints with twin wire MIG welding were analyzed. Experimental results show that no hot crack was found in the weld due to discontinuous dist...With thick plates of 2219 high-strength alloy, the microstructures of welded joints with twin wire MIG welding were analyzed. Experimental results show that no hot crack was found in the weld due to discontinuous distribution of cocrystallization with low melting temperature, but porosity is serious in the first weld seam that is mainly composed of equiaxial grains with uneven sizes. As the poor position of the whole welded joint, fusion zone has big and coarse grains, uneven microstructures ; In quenching zone, there exist a lot of soaked microstructures that cocrystallizntion with low melting temperature solute into matrix, thus strengthening the metal in this zone; In excessive aging zone, much more phases that distribute evenly will be separated from the matrix; Ontside this zone, properties and microstructures of the metal are basically similar to matrix due to the relatively low temperature or unaffected heat in the zone during welding.展开更多
Nanoindentation method was adopted to investigate the distribution regularities of micro-mechanical properties of 2219 twin wire welded joints, thus providing the necessary theoretical basis and guidance for joint str...Nanoindentation method was adopted to investigate the distribution regularities of micro-mechanical properties of 2219 twin wire welded joints, thus providing the necessary theoretical basis and guidance for joint strengthening and improvement of welding procedure. Experimental results show that in weld zone, micro-mechanical properties are seriously uneven. Both hardness and elastic modulus distribute as uneven sandwich layers, while micro-mechanical properties in bond area are much more uniform than weld zone;In heat-affected zone of 2219 twin wire welded joint, distribution regularity of hardness is similar to elastic modulus. The average hardness in quenching zone is higher than softening zone, and the average elastic modulus in solid solution zone is slightly higher than softening zone. As far as the whole welded joint is concerned, metal in weld possesses the lowest hardness. For welded specimens without reinforcement, fracture position is the weld when tensioning. While for welded specimens with reinforcement, bond area is the poorest position with joint strength coefficient of 61%. So, it is necessary to strengthen the poor positions--weld and bond area of 2219 twin wire welded joint in order to solve joint weakening of welding this kind of alloy.展开更多
Twin wire weld temperature results calculated by classical double ellipsoid heat source model are bigger than the experimental results. By analyzing the shape of twin wire welding arcs and the track of droplets transi...Twin wire weld temperature results calculated by classical double ellipsoid heat source model are bigger than the experimental results. By analyzing the shape of twin wire welding arcs and the track of droplets transition, the phenomena that both the fore arc and rear arc of twin wire welding deflect to the middle of the two arcs is found. Based on this the double ellipsoid heat source model is amended, and a heat source model which can be applied to calculate the temperature field of twin wire welding was put forward. This model is testified by actual experiment of temperature sampling. Then, the evolution regularities of longitudinal and transverse stress for 2219 sheets were investigated under the condition of twin wire welding. The result shows that longitudinal residual stress value of twin wire welding is 10% higher than that of the single wire welding.展开更多
Compared with using semi-automatic gas shielded arc welding, using automatic TANDEM twin wire welding and twin wire gas metal arc welding (GMAW) to weld Q690 steel, a low-alloy high-strength structural steel used in...Compared with using semi-automatic gas shielded arc welding, using automatic TANDEM twin wire welding and twin wire gas metal arc welding (GMAW) to weld Q690 steel, a low-alloy high-strength structural steel used in the hydraulic support in the fully-mechanized mining face, the welding speed, deposition rate, production environment and welding quality can be obviously improved. Compared with GMAW twin wire welding, a refined micro- structure in the weld and heat-affected zone (HAZ), narrow HAZ and improved joint strength were achieved with TANDEM on Q690. Also, due to the push-pull pulsed way in TANDEM welding, the droplet transfer, distribution on heat flow and interaction between two arcs were completely different from those in GMAW twin wire system. The heat input of TANDEM is only about 76.6% of GMAW, and correspondingly, the welding speed and welding seam can be obviously improved. The complete oscillation caused by TANDEM pulsed current occurred in the welding pool, which refined the grains in the microstructure. The results show that TANDEM twin wire welding is very suitable in the welding of Q690 used in the hydraulic support.展开更多
Traditional welding methods are limited in low heat input to workpiece and high welding wire melting rate. Twin-wire indirect arc(TWIA) welding is a new welding method characterized by high melting rate and low heat...Traditional welding methods are limited in low heat input to workpiece and high welding wire melting rate. Twin-wire indirect arc(TWIA) welding is a new welding method characterized by high melting rate and low heat input. This method uses two wires one connected to the negative electrode and another to the positive electrode of a direct-current(DC) power source. The workpiece is an independent, non-connected unit. A three dimensional finite element model of TWIA is devised. Electric and magnetic fields are calculated and their influence upon TWIA behavior and the welding process is discussed. The results show that with a 100 A welding current, the maximum temperature reached is 17 758 K, arc voltage is 14.646 V while maximum current density was 61 A/mm2 with a maximum Lorene force of 84.5 ~tN. The above mentioned arc parameters near the cathode and anode regions are far higher than those in the arc column region. The Lorene force is the key reason for plasma velocity direction deviated and charged particles flowed in the channel formed by the cathode, anode and upper part of arc column regions. This led to most of the energy being supplied to the polar and upper part of arc column regions. The interaction between electric and magnetic fields is a major determinant in shaping TWIA as well as heat input on the workpiece. This is a first study of electromagnetic characteristics and their influences in the TWIA welding process, and it is significant in both a theoretical and practical sense.展开更多
In this study,the welding thermal cycle curve exhibited two temperature peaks in high heat-input twin-wire separate-pool submerged-arc welding and coarse-grained heat affected zone existed in the welded joint. The inc...In this study,the welding thermal cycle curve exhibited two temperature peaks in high heat-input twin-wire separate-pool submerged-arc welding and coarse-grained heat affected zone existed in the welded joint. The inclusions of primary weld metal and coarse-grained heat affected zone of Ce-added SAW should be Al_2O_3,MnO,SiO_2,TiO,Ce_2S_3,CeS,Ce_2O_2S and Ce_2O_3. Under the effect of welding thermal cycle,oxy-sulfides inclusions of Ce,the diameter of which was less than 2. 0 μm,slightly grew larger,but the composition and type of the inclusions didn't change. The microstructure of the large heat input weld metal had acicular ferrite that Ce oxide sulphide particles induced nucleation and proeutectoid ferrite. In the coarse-grained heat affected zone of weld metal,home-position precipitation of acicular ferrite and sympathetic acicular ferrite were both observed. It was supposed that previous crystal cells of acicular ferrite in austenite grain promoted home-position precipitation of acicular ferrite. Meanwhile,sympathetic acicular ferrite tended to nucleate at the primary acicular ferrite grain boundaries,where high dislocation density was located,and grew inside the neighboring carbon-depleted austenitic regions. The granular bainite nucleated in the austenitic zone with high carbon content close to acicular ferrite and sympathetic acicular ferrite.展开更多
The paper studies the twin wire butt welding of 6mm-thick T2 copper and Q235 steel plate by using the twin wire consisting of one copper-plated welding wire and one steel welding wire.According to the appearance detec...The paper studies the twin wire butt welding of 6mm-thick T2 copper and Q235 steel plate by using the twin wire consisting of one copper-plated welding wire and one steel welding wire.According to the appearance detection,the weld joint gained is sound in shape without crackles,pores,incomplete fusion and other defects.As shown by the mechanical property,SEM and EDAX and in the metallographic analysis and test,the rupture position of copper-steel welded joint is located in the copper-part HAZ when the tensile strength reaches above 210MPa and Fe content of the welded joint involved in 1# test specimen reaches around 22.78%-26.75%,with the hardness achieving between 102~107HB and the weld structure being (α+ε) duplex solid solution.展开更多
Twin wire submerged arc welding (SAW) is widely used in oil or gas line pipe fabrication because of its high productivity. To investigate the strength and toughness of the heat-affected zone (HAZ) in twin wire SAW...Twin wire submerged arc welding (SAW) is widely used in oil or gas line pipe fabrication because of its high productivity. To investigate the strength and toughness of the heat-affected zone (HAZ) in twin wire SAW, the cooling time t8/5 of the coarse grained zone must be studied. The authors presented a method of predicting the cooling time in twin wire SAW of intermediate thickness plate. Based on Rosenthal analytical solutions, an energy factor was introduced to describe the energy contribution of the two wires, equations of thermal cycle and cooling time in twin wire SAW of both thick, and thin, plates were developed. Weighting factors determined by actual thickness and critical thickness were adopted to represent the thermal cycle and cooling time of intermediate thickness plate through linear interpolation with thick, and thin, plate solutions. The predicted cooling time for an intermediate thickness plate was verified experimentally, and the predicted results agreed therewith.展开更多
A design proposal for twin-wire pulsed MIG welding power supply based on DSP ( digital signal processor) and CAN ( controller area network ) is put forward. By ase of the CAN bus, the synergic control between the ...A design proposal for twin-wire pulsed MIG welding power supply based on DSP ( digital signal processor) and CAN ( controller area network ) is put forward. By ase of the CAN bus, the synergic control between the master and slave power supplies can be realized. And in this way, their peak currents can be guaranteed to be alternative and the interference between the two arcs can be decreased efficiently. The hardware design, software design and relative tests are provided in this paper. Tests show that the power supply can meet the design requirements of twin-wire welding.展开更多
Twin-wire indirect arc gas shielded welding is a novel welding method. By recording the arc shape and welding parameters, the effects of welding parameters and included angle on arc characteristics are discussed in th...Twin-wire indirect arc gas shielded welding is a novel welding method. By recording the arc shape and welding parameters, the effects of welding parameters and included angle on arc characteristics are discussed in this paper. The experimental results show increasing welding current can prompt centralized and straight of arc due to increasing plasma force and electric magnetic pinch effect. Increasing arc voltage can increase the size and brightness of the arc, as a result of increasing arc energy. The reducing of included angle increases the electric magnetic pinch effect, the arc becomes slender and supplies higher energy. It is thought the smaller included angle is beneficial to obtain perfect weld bead.展开更多
The measurement of thermal cycle curves of a high-strength low-alloy steel (HSLA) subjected twin-wire submerged arc welding (SAW) was introduced. The thermal simulation test was performed by using the obtained cur...The measurement of thermal cycle curves of a high-strength low-alloy steel (HSLA) subjected twin-wire submerged arc welding (SAW) was introduced. The thermal simulation test was performed by using the obtained curves. The impact toughness at -50 ℃ temperature of the simulated samples was also tested. OM, SEM and TEM of the heat-affected zone (HAZ) of some simulation specimens were investigated. The results showed that the HSLA endured the twin-wire welding thermal cycle, generally, the low-temperature toughness values of each part of HAZ was lower than that of the parent materials, and the microstructure of coarse-grained zone(CGHAZ) mainly made up of granular bainite is the reason of the toughness serious deterioration. Coarse grain, grain boundary carbide extract and M-A island with large size and irregular polygon, along the grain boundary distribution, are the reasons for the toughness deterioration of CGHAZ. The research also showed that selected parameters of twin-wire SAW can meet the requirements to weld the test steel.展开更多
The twin-wire SAW welding process was investigated using Baosteel 70 kg class high strength steel, and the properties of the joints were studied using conventional single and double-faced grooves as well as an optimiz...The twin-wire SAW welding process was investigated using Baosteel 70 kg class high strength steel, and the properties of the joints were studied using conventional single and double-faced grooves as well as an optimized groove. The results showed that by using an optimized double-faced groove, a small root face, and no back gouging, a small welding heat input was achieved and thus the joint strength and toughness were improved significantly. Also, removing back gouging reduced the labor required in the process. The weld reinforcement and deformation were observed to be rather small.展开更多
The tenacity of heat-affected zone (HAZ) will decline and the size of grains will increase, because of the overheating on HAZ when submerged are welding (SAW) is ased to thick plate with high heat input. The shapi...The tenacity of heat-affected zone (HAZ) will decline and the size of grains will increase, because of the overheating on HAZ when submerged are welding (SAW) is ased to thick plate with high heat input. The shaping will worsen when SAW is used to thin plate with high current at high speed. A new SAW technology, the pulsed direct current (DC) automatic SAW, will be put forward in this paper in order to overcome the above shortcomings. And a pulsed controller with micro-controller unit (MCU) as the core, nixie tube (NT) and keyboard as the man-machine conversation interface is developed. The main functions of the pulsed controller include the output of pulsed welding current and the working with twinwire. The research has widely prospects in application with significant meanings in theory and practical engineering.展开更多
文摘With thick plates of 2219 high-strength alloy, the microstructures of welded joints with twin wire MIG welding were analyzed. Experimental results show that no hot crack was found in the weld due to discontinuous distribution of cocrystallization with low melting temperature, but porosity is serious in the first weld seam that is mainly composed of equiaxial grains with uneven sizes. As the poor position of the whole welded joint, fusion zone has big and coarse grains, uneven microstructures ; In quenching zone, there exist a lot of soaked microstructures that cocrystallizntion with low melting temperature solute into matrix, thus strengthening the metal in this zone; In excessive aging zone, much more phases that distribute evenly will be separated from the matrix; Ontside this zone, properties and microstructures of the metal are basically similar to matrix due to the relatively low temperature or unaffected heat in the zone during welding.
基金The project is supported by Postdoctoral Science Fund of China and Postdoctoral Fund of Heilongjiang Province.
文摘Nanoindentation method was adopted to investigate the distribution regularities of micro-mechanical properties of 2219 twin wire welded joints, thus providing the necessary theoretical basis and guidance for joint strengthening and improvement of welding procedure. Experimental results show that in weld zone, micro-mechanical properties are seriously uneven. Both hardness and elastic modulus distribute as uneven sandwich layers, while micro-mechanical properties in bond area are much more uniform than weld zone;In heat-affected zone of 2219 twin wire welded joint, distribution regularity of hardness is similar to elastic modulus. The average hardness in quenching zone is higher than softening zone, and the average elastic modulus in solid solution zone is slightly higher than softening zone. As far as the whole welded joint is concerned, metal in weld possesses the lowest hardness. For welded specimens without reinforcement, fracture position is the weld when tensioning. While for welded specimens with reinforcement, bond area is the poorest position with joint strength coefficient of 61%. So, it is necessary to strengthen the poor positions--weld and bond area of 2219 twin wire welded joint in order to solve joint weakening of welding this kind of alloy.
文摘Twin wire weld temperature results calculated by classical double ellipsoid heat source model are bigger than the experimental results. By analyzing the shape of twin wire welding arcs and the track of droplets transition, the phenomena that both the fore arc and rear arc of twin wire welding deflect to the middle of the two arcs is found. Based on this the double ellipsoid heat source model is amended, and a heat source model which can be applied to calculate the temperature field of twin wire welding was put forward. This model is testified by actual experiment of temperature sampling. Then, the evolution regularities of longitudinal and transverse stress for 2219 sheets were investigated under the condition of twin wire welding. The result shows that longitudinal residual stress value of twin wire welding is 10% higher than that of the single wire welding.
基金Item Sponsored by National Natural Science Foundation of China(51005106)A Project Funded by Priority Academic Program Development of Jiangsu Higher Education Institutions of ChinaAdvanced Welding Technology Key Laboratory Open Foundation Funded Projects in Jiangsu Province of China
文摘Compared with using semi-automatic gas shielded arc welding, using automatic TANDEM twin wire welding and twin wire gas metal arc welding (GMAW) to weld Q690 steel, a low-alloy high-strength structural steel used in the hydraulic support in the fully-mechanized mining face, the welding speed, deposition rate, production environment and welding quality can be obviously improved. Compared with GMAW twin wire welding, a refined micro- structure in the weld and heat-affected zone (HAZ), narrow HAZ and improved joint strength were achieved with TANDEM on Q690. Also, due to the push-pull pulsed way in TANDEM welding, the droplet transfer, distribution on heat flow and interaction between two arcs were completely different from those in GMAW twin wire system. The heat input of TANDEM is only about 76.6% of GMAW, and correspondingly, the welding speed and welding seam can be obviously improved. The complete oscillation caused by TANDEM pulsed current occurred in the welding pool, which refined the grains in the microstructure. The results show that TANDEM twin wire welding is very suitable in the welding of Q690 used in the hydraulic support.
基金Supported by National Natural Science Foundation of China(Grant No.51171093)
文摘Traditional welding methods are limited in low heat input to workpiece and high welding wire melting rate. Twin-wire indirect arc(TWIA) welding is a new welding method characterized by high melting rate and low heat input. This method uses two wires one connected to the negative electrode and another to the positive electrode of a direct-current(DC) power source. The workpiece is an independent, non-connected unit. A three dimensional finite element model of TWIA is devised. Electric and magnetic fields are calculated and their influence upon TWIA behavior and the welding process is discussed. The results show that with a 100 A welding current, the maximum temperature reached is 17 758 K, arc voltage is 14.646 V while maximum current density was 61 A/mm2 with a maximum Lorene force of 84.5 ~tN. The above mentioned arc parameters near the cathode and anode regions are far higher than those in the arc column region. The Lorene force is the key reason for plasma velocity direction deviated and charged particles flowed in the channel formed by the cathode, anode and upper part of arc column regions. This led to most of the energy being supplied to the polar and upper part of arc column regions. The interaction between electric and magnetic fields is a major determinant in shaping TWIA as well as heat input on the workpiece. This is a first study of electromagnetic characteristics and their influences in the TWIA welding process, and it is significant in both a theoretical and practical sense.
基金supported by the National Natural Science Foundation of China,the Baoshan Iron&Steel Co.,Ltd(No.U1260103)
文摘In this study,the welding thermal cycle curve exhibited two temperature peaks in high heat-input twin-wire separate-pool submerged-arc welding and coarse-grained heat affected zone existed in the welded joint. The inclusions of primary weld metal and coarse-grained heat affected zone of Ce-added SAW should be Al_2O_3,MnO,SiO_2,TiO,Ce_2S_3,CeS,Ce_2O_2S and Ce_2O_3. Under the effect of welding thermal cycle,oxy-sulfides inclusions of Ce,the diameter of which was less than 2. 0 μm,slightly grew larger,but the composition and type of the inclusions didn't change. The microstructure of the large heat input weld metal had acicular ferrite that Ce oxide sulphide particles induced nucleation and proeutectoid ferrite. In the coarse-grained heat affected zone of weld metal,home-position precipitation of acicular ferrite and sympathetic acicular ferrite were both observed. It was supposed that previous crystal cells of acicular ferrite in austenite grain promoted home-position precipitation of acicular ferrite. Meanwhile,sympathetic acicular ferrite tended to nucleate at the primary acicular ferrite grain boundaries,where high dislocation density was located,and grew inside the neighboring carbon-depleted austenitic regions. The granular bainite nucleated in the austenitic zone with high carbon content close to acicular ferrite and sympathetic acicular ferrite.
基金Foundation item:NUST Research Funding,No.2010XQTR01
文摘The paper studies the twin wire butt welding of 6mm-thick T2 copper and Q235 steel plate by using the twin wire consisting of one copper-plated welding wire and one steel welding wire.According to the appearance detection,the weld joint gained is sound in shape without crackles,pores,incomplete fusion and other defects.As shown by the mechanical property,SEM and EDAX and in the metallographic analysis and test,the rupture position of copper-steel welded joint is located in the copper-part HAZ when the tensile strength reaches above 210MPa and Fe content of the welded joint involved in 1# test specimen reaches around 22.78%-26.75%,with the hardness achieving between 102~107HB and the weld structure being (α+ε) duplex solid solution.
文摘Twin wire submerged arc welding (SAW) is widely used in oil or gas line pipe fabrication because of its high productivity. To investigate the strength and toughness of the heat-affected zone (HAZ) in twin wire SAW, the cooling time t8/5 of the coarse grained zone must be studied. The authors presented a method of predicting the cooling time in twin wire SAW of intermediate thickness plate. Based on Rosenthal analytical solutions, an energy factor was introduced to describe the energy contribution of the two wires, equations of thermal cycle and cooling time in twin wire SAW of both thick, and thin, plates were developed. Weighting factors determined by actual thickness and critical thickness were adopted to represent the thermal cycle and cooling time of intermediate thickness plate through linear interpolation with thick, and thin, plate solutions. The predicted cooling time for an intermediate thickness plate was verified experimentally, and the predicted results agreed therewith.
基金This project was supported by National Natural Science Foundation of China(50375054).
文摘A design proposal for twin-wire pulsed MIG welding power supply based on DSP ( digital signal processor) and CAN ( controller area network ) is put forward. By ase of the CAN bus, the synergic control between the master and slave power supplies can be realized. And in this way, their peak currents can be guaranteed to be alternative and the interference between the two arcs can be decreased efficiently. The hardware design, software design and relative tests are provided in this paper. Tests show that the power supply can meet the design requirements of twin-wire welding.
文摘Twin-wire indirect arc gas shielded welding is a novel welding method. By recording the arc shape and welding parameters, the effects of welding parameters and included angle on arc characteristics are discussed in this paper. The experimental results show increasing welding current can prompt centralized and straight of arc due to increasing plasma force and electric magnetic pinch effect. Increasing arc voltage can increase the size and brightness of the arc, as a result of increasing arc energy. The reducing of included angle increases the electric magnetic pinch effect, the arc becomes slender and supplies higher energy. It is thought the smaller included angle is beneficial to obtain perfect weld bead.
基金Funded by the Doctorate Fund of the Ministry of Education(No.200804870034)
文摘The measurement of thermal cycle curves of a high-strength low-alloy steel (HSLA) subjected twin-wire submerged arc welding (SAW) was introduced. The thermal simulation test was performed by using the obtained curves. The impact toughness at -50 ℃ temperature of the simulated samples was also tested. OM, SEM and TEM of the heat-affected zone (HAZ) of some simulation specimens were investigated. The results showed that the HSLA endured the twin-wire welding thermal cycle, generally, the low-temperature toughness values of each part of HAZ was lower than that of the parent materials, and the microstructure of coarse-grained zone(CGHAZ) mainly made up of granular bainite is the reason of the toughness serious deterioration. Coarse grain, grain boundary carbide extract and M-A island with large size and irregular polygon, along the grain boundary distribution, are the reasons for the toughness deterioration of CGHAZ. The research also showed that selected parameters of twin-wire SAW can meet the requirements to weld the test steel.
文摘The twin-wire SAW welding process was investigated using Baosteel 70 kg class high strength steel, and the properties of the joints were studied using conventional single and double-faced grooves as well as an optimized groove. The results showed that by using an optimized double-faced groove, a small root face, and no back gouging, a small welding heat input was achieved and thus the joint strength and toughness were improved significantly. Also, removing back gouging reduced the labor required in the process. The weld reinforcement and deformation were observed to be rather small.
文摘The tenacity of heat-affected zone (HAZ) will decline and the size of grains will increase, because of the overheating on HAZ when submerged are welding (SAW) is ased to thick plate with high heat input. The shaping will worsen when SAW is used to thin plate with high current at high speed. A new SAW technology, the pulsed direct current (DC) automatic SAW, will be put forward in this paper in order to overcome the above shortcomings. And a pulsed controller with micro-controller unit (MCU) as the core, nixie tube (NT) and keyboard as the man-machine conversation interface is developed. The main functions of the pulsed controller include the output of pulsed welding current and the working with twinwire. The research has widely prospects in application with significant meanings in theory and practical engineering.