To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockb...To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design.展开更多
We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensiti...We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels.展开更多
Engineering shallow,large-span rock tunnels challenges deformation control and escalates construction costs.This study investigates the excavation compensation method(ECM)and its associated technologies to address the...Engineering shallow,large-span rock tunnels challenges deformation control and escalates construction costs.This study investigates the excavation compensation method(ECM)and its associated technologies to address these issues.Utilizing five key technologies,the ECM effectively modulates radial stress post-excavation,redistributes stress in the surrounding rock,and eliminates tensile stress at the excavation face.Pre-tensioning measures further enhance the rock’s residual strength,establishing a new stability equilibrium.Field tests corroborate the method’s effectiveness,demonstrating a crown settlement reduction of 3–8 mm,a nearly 50%decrease compared to conventional construction approaches.Additionally,material consumption and construction duration were reduced by approximately 30%–35%and 1.75 months per 100 m,respectively.Thus,the ECM represents a significant innovation in enhancing the stability and construction efficiency of large-span rock tunnels,marking a novel contribution to the engineering field.展开更多
The stability of strip footings subjected to eccentrically inclined loads is critical for reliable foundation design.This study investigates the effect of a circular unlined tunnel in a rock mass on the ultimate beari...The stability of strip footings subjected to eccentrically inclined loads is critical for reliable foundation design.This study investigates the effect of a circular unlined tunnel in a rock mass on the ultimate bearing capacity(UBC)of a foundation with width B under inclined and eccentric loads.Adaptive finite element limit analysis was employed to evaluate the reduction in UBC of the footing resting above a tunnel.The examined critical parameters include normalized load eccentricity(e/B),load inclination(β),and horizontal and vertical distances of the tunnel from the foundation(P/B and Q/B,respectively),along with rock mass properties.The results reveal that for e/B≥0.25 and β≤60°,the reduction coefficient,R_(c)≥0.90,suggesting that the presence of a tunnel has a minimal impact on the load-bearing capacity of the footing,with failure primarily governed by load eccentricity and inclination.Additionally,potential failure mechanisms are explored,showing that at lower e/B,higher β,and lower Q/B,the tunnel significantly affects footing's failure envelope.Conversely,at higher e/B and lower β,failure is due to rotational effects of footing,regardless of the tunnel's position.To predict the Rc more accurately,due to the time-consuming nature of direct calculations,both MLR and ANN models were developed.The MLR model provided a baseline for comparison,while the ANN model,with a coefficient of determination(R2)of 0.98,demonstrated superior accuracy compared to the R2=0.96 of MLR.Using both approaches ensured robust and efficient predictions of Rc.Since Rc does not directly provide the reduced UBC of footing due to presence of tunnel,the study introduced bearing capacity factor(Nc)to enable direct calculation of the reduced UBC of footing.These findings offer theoretical guidelines for preliminary design and provide practitioners with an effective tool for evaluating UBC reduction in complex loading scenarios involving tunnels.展开更多
The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric d...The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data.展开更多
Underground geotechnical engineering encounters persistent challenges in ensuring the stability and safety of surrounding rock structures, particularly within rocky tunnels. Rock reinforcement techniques, including th...Underground geotechnical engineering encounters persistent challenges in ensuring the stability and safety of surrounding rock structures, particularly within rocky tunnels. Rock reinforcement techniques, including the use of steel mesh, are critical to achieving this goal. However, there exists a knowledge gap regarding the comprehensive understanding of the mechanical behavior and failure mechanisms exhibited by steel mesh under diverse loading conditions. This study thoroughly explored the steel mesh's performance throughout the entire loading-failure process, innovating with detailed analysis and modeling techniques. By integrating advanced numerical modeling with laboratory experiments, the study examines the influence of varying reinforcement levels and geometric parameters on the steel mesh strength and deformation characteristics. Sensitivity analysis, employing gray correlation theory, identifies the key factors affecting the mesh performance, while a BP (Backpropagation) neural network model predicts maximum vertical deformation with high accuracy. The findings underscore the critical role of steel diameter and mesh spacing in optimizing peak load capacity, displacement, and energy absorption, offering practical guidelines for design improvements. The use of a Bayesian Regularization (BR) algorithm further enhances the predictive accuracy compared to traditional methods. This research provides new insights into optimizing steel mesh design for underground applications, offering an innovative approach to enhancing structural safety in geotechnical projects.展开更多
High geostress,a typical attribute of tunnels located at significant depths,is crucial in causing stress-induced failure and influencing the stability of the tunnel crown.This study developed an analytical method for ...High geostress,a typical attribute of tunnels located at significant depths,is crucial in causing stress-induced failure and influencing the stability of the tunnel crown.This study developed an analytical method for the failure mechanism that occurs in deep-buried tunnel roofs,taking into account the influence of geostress.The limit analysis theory was utilized for deriving analytical solutions about the geometry of the collapsing surface and the limit supporting pressure.The collapsing surface obtained by the analytical solution was validated by the findings of the physical model test,which shows a high level of agreement with the actual one.An extensive investigation was done to explore the effects of the lateral pressure coefficients,the tunnel buried depth,the geological conditions of the surrounding rock,the long-short axis ratio,and the size of the tunnel profile.The findings indicate that an increase in the lateral pressure coefficient from 0.5 to 1.5 results in a reduction in the height of the collapsing zone by 2.08 m and the width of the collapsing zone by 1.15 m,while simultaneously increases the limit supporting pressure by 18.9%.The proposed upper bound method accurately determines the limit supporting pressure and the geometry of the collapsing surface,which aligns well with the results acquired through numerical modelling and on-site monitoring in actual engineering applications.The proposed analytical method can serve as a reference for similar crown failure issues of deep-buried tunnels.展开更多
According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer str...According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment.展开更多
To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and str...To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and stress variation of the existing structure and the effect of underground carriageway structures on the surface subsidence.The curves of the maximum differential subsidence,torsion angle,and distortion of the cross-section of the existing structure show two peaks in succession during traversing of two metro tunnels beneath it.The torsion angle of the existing structure changes when the two tunnels traverse beneath it in opposite directions.The first traversing of the shield tunnel mainly induces the magnitude variation in torsional deformation of the existing structure,but the second traversing of the subsurface tunnel may cause a dynamic change in the magnitude and form of torsional deformation in the existing structure.The shielding effect can reduce the surface subsidence caused by metro tunnel excavation to a certain extent,and the development trend of subsidence becomes slower as the excavation continues.展开更多
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-e...The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.展开更多
The waterproof construction of subway tunnels is a crucial and challenging aspect of subway tunnel engineering.Mastering excellent waterproof construction technology is essential to ensure that the construction meets ...The waterproof construction of subway tunnels is a crucial and challenging aspect of subway tunnel engineering.Mastering excellent waterproof construction technology is essential to ensure that the construction meets design requirements and guarantees the safe operation of subway lines.This paper focuses on discussing waterproof construction technology for subway station tunnels.By analyzing the main methods and techniques of underground tunnel construction,as well as the key techniques and difficulties of waterproofing construction,this paper examines the waterproofing construction project of Guangzhou Metro Culture Park Station as a case study.It analyzes the methods,quality management practices,and safety management strategies applied in the project.This paper serves as a reference for tunnel engineering design and construction units in our country,offering insights into effective waterproof construction techniques for subway tunnels.展开更多
Tunnels are vital in connecting crucial transportation hubs as transportation infrastructure evolves.Variations in tunnel design standards and driving conditions across different levels directly impact driver visual p...Tunnels are vital in connecting crucial transportation hubs as transportation infrastructure evolves.Variations in tunnel design standards and driving conditions across different levels directly impact driver visual perception and traffic safety.This study employs a Gaussian hybrid clustering machine learning model to explore driver gaze patterns in highway tunnels and exits.By utilizing contour coefficients,the optimal number of classification clusters is determined.Analysis of driver visual behavior across tunnel levels,focusing on gaze point distribution,gaze duration,and sweep speed,was conducted.Findings indicate freeway tunnel exits exhibit three distinct fixation point categories aligning with Gaussian distribution,while highway tunnels display four such characteristics.Notably,in both tunnel types,65%of driver gaze is concentrated on the near area ahead of their lane.Differences emerge in highway tunnels due to oncoming traffic,leading to 13.47%more fixation points and 0.9%increased fixation time in the right lane compared to regular highway tunnel conditions.Moreover,scanning speeds predominantly fall within the 0.25-0.3 range,accounting for 75.47%and 31.14%of the total sweep speed.展开更多
In order to simulate the propagation process of subway vibration of parallel tunnels in semi-infinite rocks or soils,time domain boundary element method(TD-BEM)formulation for analyzing the dynamic response of twin-pa...In order to simulate the propagation process of subway vibration of parallel tunnels in semi-infinite rocks or soils,time domain boundary element method(TD-BEM)formulation for analyzing the dynamic response of twin-parallel circular tunnels in an elastic semi-infinite medium is developed in this paper.The time domain boundary integral equations of displacement and stress for the elastodynamic problem are presented based on Betti’s reciprocal work theorem,ignoring contributions from initial conditions and body forces.In the process of establishing time domain boundary integral equations,some virtual boundaries are constructed between finite boundaries and the free boundary to form a boundary to refer to the time domain boundary integral equations for a single circular tunnel under dynamic loads.The numerical treatment and solving process of time domain boundary integral equations are given in detail,including temporal discretization,spatial discretization and the assembly of the influencing coefficients.In the process of the numerical implementation,infinite boundary elements are incorporated in time domain boundary element method formulation to satisfy stress free conditions on the ground surface,in addition,to reduce the discretization of the boundary of the ground surface.The applicability and efficiency of the presented time domain boundary element formulation are verified by a deliberately designed example.展开更多
With the development of global urbanization,the utilization of underground space is more critical and attractive for civil purposes.Various shapes of shield tunnels have been gradually proposed to cope with different ...With the development of global urbanization,the utilization of underground space is more critical and attractive for civil purposes.Various shapes of shield tunnels have been gradually proposed to cope with different geological conditions and service purposes of underground structures.Generally,reducing the burial depth of shield tunnel is conducive to construction and cost saving.However,extremely small overburden depth cannot provide sufficient uplift resistance to maintain the stability and serviceability of the tunnel.To this end,this paper firstly reviewed the status of deriving the minimum sand over-burden depth of circular shield tunnel using mechanical equilibrium(ME)method.It revealed that the estimated depth is rather conservative.Then,the uplift resistance mechanism of both circular and rectangular tunnels was deduced theoretically and verified with the model tests.The theoretical uplift resistance is consistent with the experimental values,indicating the feasibility of the proposed equations.Furthermore,the determination of the minimum soil overburden depth of rectangular shield tunnel under various working conditions was presented through integrated ME method,which can provide more reasonable estimations of suggested tunnel burial depth for practical construction.Additionally,optimizations were made for calculating the uplift resistance,and the soil thickness providing uplift resistance is suggested to be adjusted according to the testing results.The results can provide reference for the design and construction of various shapes of shield tunnels in urban underground space exploitation.展开更多
Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,whic...Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,which makes it difficult to meet the requirements of ground control under complex conditions. As a new support form with high strength and rigidity, the confined concrete arch plays an important role in controlling the rock deformation under complex conditions. The section shape of the tunnel has an important impact on the mechanical properties and design of the support system. However, studies on the mechanical properties and influence mechanism of the new confined concrete arch are rarely reported. To this end, the mechanical properties of traditional U-shaped steel and new confined concrete arches are compared and comparative tests on arches of circular and straight-leg semicircular shapes in deep tunnels are conducted. A large mechanical testing system for underground engineering support structure is developed. The mechanical properties and influence mechanism of confined concrete arches with different section shapes under different loading modes and cross-section parameters are systematically studied. Test results show that the bearing capacity of the confined concrete arch is 2.10 times that of the U-shaped steel arch, and the bearing capacity of the circular confined concrete arch is 2.27 times that of the straight-leg semicircular arch. Among the various influencing factors and their engineering parameters,the lateral stress coefficient has the greatest impact on the bearing capacity of the confined concrete arch,followed by the steel pipe wall thickness, steel strength, and core concrete strength. Subsequently, the economic index of bearing capacity and cost is established, and the optimization design method for the confined concrete arch is proposed. Finally, this design method is applied to a high-stress tunnel under complex conditions, and the deformation of the surrounding rock is effectively controlled.展开更多
The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractu...The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractured zone depth.The ratio of the excavation damaged zone depth to the excavation fractured zone depth is greater than 2.0 in a rock mass with both high strength and good integrity,but less than1.5 in a rock mass with lower strength or poor integrity.Zonal disintegration in a rock mass with high strength and fair integrity is more likely to occur when it contains more than two groups of primary fractures in damaged zones.Fractures develop outward in zonal disintegration but are totally different from the single-zone fracture,in which the fractures develop inward,and it is the starting position of the fractured zone when the excavation surface of the middle pilot is 7–9 m close to the pre-set borehole and it stops after the excavation surface of the baseplate is 11–14 m away.The most intense evolution occurs around 2–4 m from the pre-set borehole in the sidewall expansion stage.The research results provide a reference for the monitoring scheme and support design of CJPL-Ⅲin its future construction.展开更多
Interlaid rock is an important component in the construction of neighborhood tunnels that supports and reinforces the area between two tunnels.However,the blasting load during excavation can sometimes damage the inter...Interlaid rock is an important component in the construction of neighborhood tunnels that supports and reinforces the area between two tunnels.However,the blasting load during excavation can sometimes damage the interlaid rock and threaten the stability of a tunnel’s structure.This paper presents a case study of the small clearance section of the Liantang highway tunnel project in Shenzhen,China,where the minimum distance between the two tunnels involved is only 0.5 m.To reduce the damage to the interlaid rock caused by blasting loads,we proposed a four-part excavation method with a vibrationcushioning rock layer in the following tunnel of neighborhood tunnels.Numerical simulation was used to model the damage prevention mechanism of the vibration-cushioning rock layer and to better understand the propagation of cracks in the interlaid rock.Furthermore,based on the simulation results,combined microseismic controlled-blasting technology was implemented,using innovative blasting patterns combined with different charge structures and blasting equipment designed according to the varying thickness of the interlaid rock.Finally,this implementation succeeded in protecting interlaid rock during blasting operations.展开更多
Excavation and control of tunneling responses in swelling soft-rock tunnels of Sichuan-Tibet railway under seepage conditions were studied.For this,a fractional viscoplastic(FVP)model for swelling soft rocks was estab...Excavation and control of tunneling responses in swelling soft-rock tunnels of Sichuan-Tibet railway under seepage conditions were studied.For this,a fractional viscoplastic(FVP)model for swelling soft rocks was established by introducing Abel dashpot and unsteady viscosity coefficient,considering additional swelling deformation and damage of rock caused by humidity effect.In view of the FVP model,the viscoplastic deformation solutions for rock mass surrounding tunnel under seepage conditions were derived and long-term mechanical responses of swelling rocks upon tunnel excavation were analyzed.Next,a stress release coefficient considering seepage and creep was proposed,based on which control responses considering stress release and failure mechanism of stress release measures were analyzed.The results showed that:(i)The one-dimensional(1D)FVP model has a good application for swelling rock and the three-dimensional(3D)FVP model could well describe the whole creep process of rock mass despite a much higher creep attenuation rate in the first stage of creep;and(ii)An appropriate stress release and deformation of surrounding rocks could effectively reduce the supporting resistance.However,upon a large stress release,the radius of plastic region could increase significantly,and the strength of the surrounding rock mass decreases greatly.The proposed solution could provide a theoretical framework for capturing the excavation and support responses for tunneling in swelling rock mass in consideration of time effect.展开更多
The lag in quantitative methods and detection techniques for geologic information has resulted in time-consuming and human-experienced geologic analysis in tunnels.Geochemical indicators of rocks can be used to identi...The lag in quantitative methods and detection techniques for geologic information has resulted in time-consuming and human-experienced geologic analysis in tunnels.Geochemical indicators of rocks can be used to identify adverse geology and to explain the intrinsic causes of damage to normal rocks.This study proposes a method to identify adverse geology by extracting and imaging the indicator elements.The mapping relationship between rock components and geologic bodies is quickly determined by indicator element extraction based on factor analysis,and then the data are gridded for image output.The location and size of the target adverse geology are visually identified through the distribution images of the indicator elements,thus reducing data dimensions and analysis time.A non-destructive,in-situ and fast element detection technique in tunnels was adopted to speed up the process of geology identification.The accuracy of the detection was validated by comparing field and laboratory test results.This study further confirms and refines the previous research,and the results provide references for geological,mining and underground projects.展开更多
基金funding support from the Fundamental Research Funds for the Central Universities(Grant No.2023JBZY024)the National Natural Science Foundation of China(Grant Nos.52208382 and 52278387).
文摘To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design.
基金funding received by a grant from the Natural Sciences and Engineering Research Council of Canada(NSERC)(Grant No.CRDPJ 469057e14).
文摘We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels.
基金Projects(42377148,51674265)supported by the National Natural Science Foundation of ChinaProject(2018YFC0603705)supported by the National Key Research and Development Program of China。
文摘Engineering shallow,large-span rock tunnels challenges deformation control and escalates construction costs.This study investigates the excavation compensation method(ECM)and its associated technologies to address these issues.Utilizing five key technologies,the ECM effectively modulates radial stress post-excavation,redistributes stress in the surrounding rock,and eliminates tensile stress at the excavation face.Pre-tensioning measures further enhance the rock’s residual strength,establishing a new stability equilibrium.Field tests corroborate the method’s effectiveness,demonstrating a crown settlement reduction of 3–8 mm,a nearly 50%decrease compared to conventional construction approaches.Additionally,material consumption and construction duration were reduced by approximately 30%–35%and 1.75 months per 100 m,respectively.Thus,the ECM represents a significant innovation in enhancing the stability and construction efficiency of large-span rock tunnels,marking a novel contribution to the engineering field.
基金supported by the Civil Engineering Department, Madan Mohan Malaviya University of Technology, Gorakhpur, India
文摘The stability of strip footings subjected to eccentrically inclined loads is critical for reliable foundation design.This study investigates the effect of a circular unlined tunnel in a rock mass on the ultimate bearing capacity(UBC)of a foundation with width B under inclined and eccentric loads.Adaptive finite element limit analysis was employed to evaluate the reduction in UBC of the footing resting above a tunnel.The examined critical parameters include normalized load eccentricity(e/B),load inclination(β),and horizontal and vertical distances of the tunnel from the foundation(P/B and Q/B,respectively),along with rock mass properties.The results reveal that for e/B≥0.25 and β≤60°,the reduction coefficient,R_(c)≥0.90,suggesting that the presence of a tunnel has a minimal impact on the load-bearing capacity of the footing,with failure primarily governed by load eccentricity and inclination.Additionally,potential failure mechanisms are explored,showing that at lower e/B,higher β,and lower Q/B,the tunnel significantly affects footing's failure envelope.Conversely,at higher e/B and lower β,failure is due to rotational effects of footing,regardless of the tunnel's position.To predict the Rc more accurately,due to the time-consuming nature of direct calculations,both MLR and ANN models were developed.The MLR model provided a baseline for comparison,while the ANN model,with a coefficient of determination(R2)of 0.98,demonstrated superior accuracy compared to the R2=0.96 of MLR.Using both approaches ensured robust and efficient predictions of Rc.Since Rc does not directly provide the reduced UBC of footing due to presence of tunnel,the study introduced bearing capacity factor(Nc)to enable direct calculation of the reduced UBC of footing.These findings offer theoretical guidelines for preliminary design and provide practitioners with an effective tool for evaluating UBC reduction in complex loading scenarios involving tunnels.
基金financial support from the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0708)the National Natural Science Foundation of China(No.41941018)the Special Fund of Yueqi Scholars(No.800015Z1207).
文摘The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data.
基金funded by the National Natural Science Foundation of China(Grant No.52178396).
文摘Underground geotechnical engineering encounters persistent challenges in ensuring the stability and safety of surrounding rock structures, particularly within rocky tunnels. Rock reinforcement techniques, including the use of steel mesh, are critical to achieving this goal. However, there exists a knowledge gap regarding the comprehensive understanding of the mechanical behavior and failure mechanisms exhibited by steel mesh under diverse loading conditions. This study thoroughly explored the steel mesh's performance throughout the entire loading-failure process, innovating with detailed analysis and modeling techniques. By integrating advanced numerical modeling with laboratory experiments, the study examines the influence of varying reinforcement levels and geometric parameters on the steel mesh strength and deformation characteristics. Sensitivity analysis, employing gray correlation theory, identifies the key factors affecting the mesh performance, while a BP (Backpropagation) neural network model predicts maximum vertical deformation with high accuracy. The findings underscore the critical role of steel diameter and mesh spacing in optimizing peak load capacity, displacement, and energy absorption, offering practical guidelines for design improvements. The use of a Bayesian Regularization (BR) algorithm further enhances the predictive accuracy compared to traditional methods. This research provides new insights into optimizing steel mesh design for underground applications, offering an innovative approach to enhancing structural safety in geotechnical projects.
基金supported partially by the National Natural Science Foundation of China(42277158,41972277,and U1934212)。
文摘High geostress,a typical attribute of tunnels located at significant depths,is crucial in causing stress-induced failure and influencing the stability of the tunnel crown.This study developed an analytical method for the failure mechanism that occurs in deep-buried tunnel roofs,taking into account the influence of geostress.The limit analysis theory was utilized for deriving analytical solutions about the geometry of the collapsing surface and the limit supporting pressure.The collapsing surface obtained by the analytical solution was validated by the findings of the physical model test,which shows a high level of agreement with the actual one.An extensive investigation was done to explore the effects of the lateral pressure coefficients,the tunnel buried depth,the geological conditions of the surrounding rock,the long-short axis ratio,and the size of the tunnel profile.The findings indicate that an increase in the lateral pressure coefficient from 0.5 to 1.5 results in a reduction in the height of the collapsing zone by 2.08 m and the width of the collapsing zone by 1.15 m,while simultaneously increases the limit supporting pressure by 18.9%.The proposed upper bound method accurately determines the limit supporting pressure and the geometry of the collapsing surface,which aligns well with the results acquired through numerical modelling and on-site monitoring in actual engineering applications.The proposed analytical method can serve as a reference for similar crown failure issues of deep-buried tunnels.
基金supported by the Construction and Scientific Research Project of the Zhejiang Provincial Department of Housing and Urban-Rural Development(No.2021K126,Granted byM.J.,Long,URL:https://jst.zj.gov.cn/)the ScientificResearch Project of ChinaConstruction 4th Engineering Bureau(No.CSCEC4B-2022-KTA-10,Granted by Z.C.,Bai,URL:https://4 bur.cscec.com/)+2 种基金the Scientific Research Project of China Construction 4th Engineering Bureau(No.CSCEC4B-2023-KTA-10,Granted by D.J.,Geng,URL:https://4bur.cscec.com/)the Natural Science Foundation of Hubei Province(No.2022CFD055,Granted by N.,Dai,URL:https://kjt.hubei.gov.cn/)the National Key Research and Development Program of China under Grant No.2022YFC3803002.
文摘According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment.
基金National Natural Science Foundation of China,Grant/Award Numbers:51878060,52078046。
文摘To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and stress variation of the existing structure and the effect of underground carriageway structures on the surface subsidence.The curves of the maximum differential subsidence,torsion angle,and distortion of the cross-section of the existing structure show two peaks in succession during traversing of two metro tunnels beneath it.The torsion angle of the existing structure changes when the two tunnels traverse beneath it in opposite directions.The first traversing of the shield tunnel mainly induces the magnitude variation in torsional deformation of the existing structure,but the second traversing of the subsurface tunnel may cause a dynamic change in the magnitude and form of torsional deformation in the existing structure.The shielding effect can reduce the surface subsidence caused by metro tunnel excavation to a certain extent,and the development trend of subsidence becomes slower as the excavation continues.
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
基金Projects(52378411,52208404)supported by the National Natural Science Foundation of China。
文摘The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.
文摘The waterproof construction of subway tunnels is a crucial and challenging aspect of subway tunnel engineering.Mastering excellent waterproof construction technology is essential to ensure that the construction meets design requirements and guarantees the safe operation of subway lines.This paper focuses on discussing waterproof construction technology for subway station tunnels.By analyzing the main methods and techniques of underground tunnel construction,as well as the key techniques and difficulties of waterproofing construction,this paper examines the waterproofing construction project of Guangzhou Metro Culture Park Station as a case study.It analyzes the methods,quality management practices,and safety management strategies applied in the project.This paper serves as a reference for tunnel engineering design and construction units in our country,offering insights into effective waterproof construction techniques for subway tunnels.
基金supported by the National Natural Science Foundation of China(52302437)the Cangzhou Science and Technology Plan Project(213101011)+1 种基金the Science and Technology Program Projects of Shandong Provincial Department of Transportation(2024B28)the Doctoral Scientific Research Start-up Foundation of Shandong University of Technology(422049).
文摘Tunnels are vital in connecting crucial transportation hubs as transportation infrastructure evolves.Variations in tunnel design standards and driving conditions across different levels directly impact driver visual perception and traffic safety.This study employs a Gaussian hybrid clustering machine learning model to explore driver gaze patterns in highway tunnels and exits.By utilizing contour coefficients,the optimal number of classification clusters is determined.Analysis of driver visual behavior across tunnel levels,focusing on gaze point distribution,gaze duration,and sweep speed,was conducted.Findings indicate freeway tunnel exits exhibit three distinct fixation point categories aligning with Gaussian distribution,while highway tunnels display four such characteristics.Notably,in both tunnel types,65%of driver gaze is concentrated on the near area ahead of their lane.Differences emerge in highway tunnels due to oncoming traffic,leading to 13.47%more fixation points and 0.9%increased fixation time in the right lane compared to regular highway tunnel conditions.Moreover,scanning speeds predominantly fall within the 0.25-0.3 range,accounting for 75.47%and 31.14%of the total sweep speed.
基金would like to acknowledge thenancial support from the research Grants,Nos.2019YFC1511105,2019YFC1511104National Key R&D Program of China,No.51778193 provided by National Natural Science Foundation of China,and No.QN2020135 provided by Hebei Education Department.
文摘In order to simulate the propagation process of subway vibration of parallel tunnels in semi-infinite rocks or soils,time domain boundary element method(TD-BEM)formulation for analyzing the dynamic response of twin-parallel circular tunnels in an elastic semi-infinite medium is developed in this paper.The time domain boundary integral equations of displacement and stress for the elastodynamic problem are presented based on Betti’s reciprocal work theorem,ignoring contributions from initial conditions and body forces.In the process of establishing time domain boundary integral equations,some virtual boundaries are constructed between finite boundaries and the free boundary to form a boundary to refer to the time domain boundary integral equations for a single circular tunnel under dynamic loads.The numerical treatment and solving process of time domain boundary integral equations are given in detail,including temporal discretization,spatial discretization and the assembly of the influencing coefficients.In the process of the numerical implementation,infinite boundary elements are incorporated in time domain boundary element method formulation to satisfy stress free conditions on the ground surface,in addition,to reduce the discretization of the boundary of the ground surface.The applicability and efficiency of the presented time domain boundary element formulation are verified by a deliberately designed example.
基金support from National Major Scientific Instruments Development Project of China(Grant No.5202780029)Program of Distinguished Young Scholars,Natural Science Foundation of Chongqing,China(Grant No.cstc2020jcyjjq0087)Research on resilience prevention,control and adaptation strategy of flood disaster in megacities under changing environment(Grant No.2021-ZD-CQ-2).
文摘With the development of global urbanization,the utilization of underground space is more critical and attractive for civil purposes.Various shapes of shield tunnels have been gradually proposed to cope with different geological conditions and service purposes of underground structures.Generally,reducing the burial depth of shield tunnel is conducive to construction and cost saving.However,extremely small overburden depth cannot provide sufficient uplift resistance to maintain the stability and serviceability of the tunnel.To this end,this paper firstly reviewed the status of deriving the minimum sand over-burden depth of circular shield tunnel using mechanical equilibrium(ME)method.It revealed that the estimated depth is rather conservative.Then,the uplift resistance mechanism of both circular and rectangular tunnels was deduced theoretically and verified with the model tests.The theoretical uplift resistance is consistent with the experimental values,indicating the feasibility of the proposed equations.Furthermore,the determination of the minimum soil overburden depth of rectangular shield tunnel under various working conditions was presented through integrated ME method,which can provide more reasonable estimations of suggested tunnel burial depth for practical construction.Additionally,optimizations were made for calculating the uplift resistance,and the soil thickness providing uplift resistance is suggested to be adjusted according to the testing results.The results can provide reference for the design and construction of various shapes of shield tunnels in urban underground space exploitation.
基金supported by the National Natural Science Foundation of China (Nos. 42277174, 42077267, and 52074164)the Natural Science Foundation of Shandong Province, China (No. ZR2020JQ23)+2 种基金Major Scientific and Technological Innovation Project of Shandong Province, China (No. 2019SDZY04)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program, China (No. 2019KJG013)the opening project of State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology (No. KFJJ21-02Z)。
文摘Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,which makes it difficult to meet the requirements of ground control under complex conditions. As a new support form with high strength and rigidity, the confined concrete arch plays an important role in controlling the rock deformation under complex conditions. The section shape of the tunnel has an important impact on the mechanical properties and design of the support system. However, studies on the mechanical properties and influence mechanism of the new confined concrete arch are rarely reported. To this end, the mechanical properties of traditional U-shaped steel and new confined concrete arches are compared and comparative tests on arches of circular and straight-leg semicircular shapes in deep tunnels are conducted. A large mechanical testing system for underground engineering support structure is developed. The mechanical properties and influence mechanism of confined concrete arches with different section shapes under different loading modes and cross-section parameters are systematically studied. Test results show that the bearing capacity of the confined concrete arch is 2.10 times that of the U-shaped steel arch, and the bearing capacity of the circular confined concrete arch is 2.27 times that of the straight-leg semicircular arch. Among the various influencing factors and their engineering parameters,the lateral stress coefficient has the greatest impact on the bearing capacity of the confined concrete arch,followed by the steel pipe wall thickness, steel strength, and core concrete strength. Subsequently, the economic index of bearing capacity and cost is established, and the optimization design method for the confined concrete arch is proposed. Finally, this design method is applied to a high-stress tunnel under complex conditions, and the deformation of the surrounding rock is effectively controlled.
基金supported by the National Natural Science Foundation of China(Nos.51909136 and 42177168)Project of Youth Inno vation Promotion Association of Chinese Academy of Sciences(No.2021326)the Open Research Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education(No.2020KDZ03)。
文摘The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractured zone depth.The ratio of the excavation damaged zone depth to the excavation fractured zone depth is greater than 2.0 in a rock mass with both high strength and good integrity,but less than1.5 in a rock mass with lower strength or poor integrity.Zonal disintegration in a rock mass with high strength and fair integrity is more likely to occur when it contains more than two groups of primary fractures in damaged zones.Fractures develop outward in zonal disintegration but are totally different from the single-zone fracture,in which the fractures develop inward,and it is the starting position of the fractured zone when the excavation surface of the middle pilot is 7–9 m close to the pre-set borehole and it stops after the excavation surface of the baseplate is 11–14 m away.The most intense evolution occurs around 2–4 m from the pre-set borehole in the sidewall expansion stage.The research results provide a reference for the monitoring scheme and support design of CJPL-Ⅲin its future construction.
基金the National Natural Science Foundation of China(No.51934001).
文摘Interlaid rock is an important component in the construction of neighborhood tunnels that supports and reinforces the area between two tunnels.However,the blasting load during excavation can sometimes damage the interlaid rock and threaten the stability of a tunnel’s structure.This paper presents a case study of the small clearance section of the Liantang highway tunnel project in Shenzhen,China,where the minimum distance between the two tunnels involved is only 0.5 m.To reduce the damage to the interlaid rock caused by blasting loads,we proposed a four-part excavation method with a vibrationcushioning rock layer in the following tunnel of neighborhood tunnels.Numerical simulation was used to model the damage prevention mechanism of the vibration-cushioning rock layer and to better understand the propagation of cracks in the interlaid rock.Furthermore,based on the simulation results,combined microseismic controlled-blasting technology was implemented,using innovative blasting patterns combined with different charge structures and blasting equipment designed according to the varying thickness of the interlaid rock.Finally,this implementation succeeded in protecting interlaid rock during blasting operations.
基金Authors are thankful to Dr.Chen Xu of Ningbo University for his instructive discussions.The authors are also grateful for the support provided by the National Natural Science Foundation of China(Grant Nos.41972274 and 42207176)Ningbo Natural Science Foundation(Grant No.2022J116)for this research work.
文摘Excavation and control of tunneling responses in swelling soft-rock tunnels of Sichuan-Tibet railway under seepage conditions were studied.For this,a fractional viscoplastic(FVP)model for swelling soft rocks was established by introducing Abel dashpot and unsteady viscosity coefficient,considering additional swelling deformation and damage of rock caused by humidity effect.In view of the FVP model,the viscoplastic deformation solutions for rock mass surrounding tunnel under seepage conditions were derived and long-term mechanical responses of swelling rocks upon tunnel excavation were analyzed.Next,a stress release coefficient considering seepage and creep was proposed,based on which control responses considering stress release and failure mechanism of stress release measures were analyzed.The results showed that:(i)The one-dimensional(1D)FVP model has a good application for swelling rock and the three-dimensional(3D)FVP model could well describe the whole creep process of rock mass despite a much higher creep attenuation rate in the first stage of creep;and(ii)An appropriate stress release and deformation of surrounding rocks could effectively reduce the supporting resistance.However,upon a large stress release,the radius of plastic region could increase significantly,and the strength of the surrounding rock mass decreases greatly.The proposed solution could provide a theoretical framework for capturing the excavation and support responses for tunneling in swelling rock mass in consideration of time effect.
基金This research was supported by the National Natural Science Foundation of China(Nos.52022053 and 52279103)the Natural Science Foundation of Shandong Province,China(Nos.ZR201910270116 and ZR2023YQ049).
文摘The lag in quantitative methods and detection techniques for geologic information has resulted in time-consuming and human-experienced geologic analysis in tunnels.Geochemical indicators of rocks can be used to identify adverse geology and to explain the intrinsic causes of damage to normal rocks.This study proposes a method to identify adverse geology by extracting and imaging the indicator elements.The mapping relationship between rock components and geologic bodies is quickly determined by indicator element extraction based on factor analysis,and then the data are gridded for image output.The location and size of the target adverse geology are visually identified through the distribution images of the indicator elements,thus reducing data dimensions and analysis time.A non-destructive,in-situ and fast element detection technique in tunnels was adopted to speed up the process of geology identification.The accuracy of the detection was validated by comparing field and laboratory test results.This study further confirms and refines the previous research,and the results provide references for geological,mining and underground projects.