期刊文献+
共找到180篇文章
< 1 2 9 >
每页显示 20 50 100
Numerical Study on the Effect of Gap Diffraction on the Hydrodynamic Performance of A Floating Breakwater
1
作者 BIAN Xiang-qian JI Chun-yan +2 位作者 XU Sheng GUO Jian-ting HUO Fa-li 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期663-675,共13页
Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between... Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between the flume wall and the FBs is a critical step in 2D flume tests.However,research on the effect of the gap on the accuracy of 2D FB experimental results is scarce.To address this issue,a numerical wave tank is developed using CFD to estimate the wave-FB interaction of a moored dual-cylindrical FB,and the results are compared to experimental data from a previously published work.There is good agreement between them,indicating that the numerical model is sufficiently accurate.The numerical model is then applied to explore the effect of gap diffraction on the performance of FBs in2D experiments.It was discovered that the nondimensional gap length L_(Gap)/W_(Pool)should be smaller than 7.5%to ensure that the relative error of the transmission coefficient is smaller than 3%.The influence of the gap is also related to the entering wave properties,such as the wave height and period. 展开更多
关键词 floating breakwater diffraction effect GAP hydrodynamic performance model experiments CFD numerical simulation
下载PDF
Effect of Under Connected Plates on the Hydrodynamic Efficiency of the Floating Breakwater 被引量:15
2
作者 A.S.Koraim O.S.Rageh 《China Ocean Engineering》 SCIE EI CSCD 2014年第3期349-362,共14页
In this paper, the hydrodynamic efficiency of a floating breakwater system is experimentally studied by use of physical models. Regular waves with wide ranges of wave heights and periods are tested. The efficiency of ... In this paper, the hydrodynamic efficiency of a floating breakwater system is experimentally studied by use of physical models. Regular waves with wide ranges of wave heights and periods are tested. The efficiency of the breakwater is presented as a function of the wave transmission, reflection, and energy dissipation coefficients. Different parameters affecting the breakwater efficiency are investigated, e.g. the number of the under connected vertical plates, the length of the mooring wire, and the wave length. It is found that, the transmission coefficient kt decreases with the increase of the relative breakwater width B/L, the number of plates n and the relative wire length l/h, while the reflection coefficient kr takes the opposite trend. Therefore, it is possible to achieve kt values smaller than 0.25 and kr values larger than 0.80 when B/L is larger than 0.25 for the case of l/h-1.5 and n=4. In addition, empirical equations used for estimating the transmission and reflection coefficients are developed by using the dimensionless analysis, regression analysis and measured data and verified by different theoretical and experimental results. 展开更多
关键词 floating breakwaters vertical plates regular waves TRANSMISSION REFLECTION energy dissipation
下载PDF
Experimental Study of A Pile-Restrained Floating Breakwater Constructed of Pontoon and Plates 被引量:8
3
作者 王永学 董华洋 刘冲 《China Ocean Engineering》 SCIE EI 2010年第1期183-190,共8页
A pile-restrained pontoon-plate floating breakwater is proposed in this paper. The laboratory physical-model tests are conducted to investigate the wave-dissipation property and heave-motion response of a model. The i... A pile-restrained pontoon-plate floating breakwater is proposed in this paper. The laboratory physical-model tests are conducted to investigate the wave-dissipation property and heave-motion response of a model. The influence of the model's geometric parameters including relative pontoon width, plate width, number of plates and pontoon draft on wavedissipation performance and heave-motion response are discussed, as well as the correlation between these two factors. The result indicates that wave-dissipation performance of the proposed structure is better than the pontoon structure: its transmission coefficient and heave-motion height are reduced by 0.2 and 0.3, respectively, in comparison with those of the pile-restrained pontoon model at a relative pontoon width of 0.2. 展开更多
关键词 floating breakwater pontoon-plate pile-restrained wave-dissipation pegrormance heave motion
下载PDF
Numerical and Experimental Investigation of Interactions Between Free-Surface Waves and A Floating Breakwater with Cylindrical-Dual/Rectangular-Single Pontoon 被引量:9
4
作者 JI Chun-yan YANG Ke +1 位作者 CHENG Yong YUAN Zhi-ming 《China Ocean Engineering》 SCIE EI CSCD 2018年第4期388-399,共12页
This paper investigates the hydrodynamic performance of a cylindrical-dual or rectangular-single pontoon floating breakwater using the numerical method and experimental study. The numerical simulation work is based on... This paper investigates the hydrodynamic performance of a cylindrical-dual or rectangular-single pontoon floating breakwater using the numerical method and experimental study. The numerical simulation work is based on the multi-physics computational fluid dynamics(CFD) code and an innovative full-structured dynamic grid method applied to update the three-degree-of-freedom(3-DOF) rigid structure motions. As a time-marching scheme, the trapezoid analogue integral method is used to update the time integration combined with remeshing at each time step.The application of full-structured mesh elements can prevent grids distortion or deformation caused by large-scale movement and improve the stability of calculation. In movable regions, each moving zone is specified with particular motion modes(sway, heave and roll). A series of experimental studies are carried out to validate the performance of the floating body and verify the accuracy of the proposed numerical model. The results are systematically assessed in terms of wave coefficients, mooring line forces, velocity streamlines and the 3-DOF motions of the floating breakwater. When compared with the wave coefficient solutions, excellent agreements are achieved between the computed and experimental data, except in the vicinity of resonant frequency. The velocity streamlines and wave profile movement in the fluid field can also be reproduced using this numerical model. 展开更多
关键词 free-surface floating breakwater three DOF Navier Stokes solver wave structure interaction dynamic full-structured mesh
下载PDF
Wave Diffraction on Arc-Shaped Floating Perforated Breakwaters 被引量:7
5
作者 段金辉 程建生 +1 位作者 王建平 王景全 《China Ocean Engineering》 SCIE EI 2012年第2期305-316,共12页
An analytical method is developed to study the sheltering effects on arc-shaped floating perforated breakwaters. In the process of analysis, the tloating breakwater is assumed to be rigid, thin, vertical, and immovabl... An analytical method is developed to study the sheltering effects on arc-shaped floating perforated breakwaters. In the process of analysis, the tloating breakwater is assumed to be rigid, thin, vertical, and immovable and located in water with constant depth. The fluid domain is divided into two regions by imaginary interface. The velocity potential in each region is expanded by eigenfunction in the context of linear theory. By satisfying continuity of pressure and normal velocity across the imaginary fluid interface, a set of linear algebraic equations can be obtained to determine the unknown coefficients for eigenfunction expansions. The accuracy of the present model was verified by a comparison with existing results for the case of arc-shaped floating breakwater. Numerical results, in the form of contour maps of the non-dimensional wave amplitude around the breakwater and diffracted wave amplitude at typical sections, are presented for a range of wave and breakwater parameters. Results show that the sheltering effects on the arc-shaped floating perforated breakwater are closely related to the incident wavelength, the draft and the porosity of the breakwater. 展开更多
关键词 arc-shaped floating perforated breakwater wave diffraction EIGENFUNCTION porosity
下载PDF
Experimental Study of Wave Attenuation in Trapezoidal Floating Breakwaters 被引量:5
6
作者 A.H.Nikpour M.N.Moghim M.A.Badri 《China Ocean Engineering》 SCIE EI CSCD 2019年第1期103-113,共11页
A comprehensive experimental study was carried out on the regular wave attenuation with a trapezoidal pontoontype floating breakwater(FB) in deep water. The functionalities of two simple FB geometries consist of a rec... A comprehensive experimental study was carried out on the regular wave attenuation with a trapezoidal pontoontype floating breakwater(FB) in deep water. The functionalities of two simple FB geometries consist of a rectangle and a trapezoid with the slope of 60° were investigated under the wave attack. A two-dimensional wave flume was used in the experiment; the incident, transmitted waves, mooring line forces and motion responses of the floating breakwaters were measured. Also the influence of the sea state conditions(incident wave height and wave period)and structural parameters(draught of the structure) were investigated using the trapezoidal FB. Our experimental results indicated that the trapezoidal FB significantly reduced the wave transmission and mooring line force when compared with rectangular FBs. A new formula was developed in order to predict the value of the transmission coefficient in trapezoidal FBs with the slope of 60°. Experimental data showed to be consistent with the results of the formula. 展开更多
关键词 REGULAR waves floating breakwater(FB) wave FLUME TRAPEZOID MOORING line force transmission
下载PDF
Hydrodynamic Performance Study of Wave Energy-Type Floating Breakwaters 被引量:3
7
作者 Hengming Zhang Xincheng Ding +2 位作者 Binzhen Zhou Liang Zhang Zheng Yuan 《Journal of Marine Science and Application》 CSCD 2019年第1期64-71,共8页
The integration of wave energy converters(WECs) with floating breakwaters has become common recently due to the benefits of both cost-sharing and providing offshore power supply. In this study, based on viscous comput... The integration of wave energy converters(WECs) with floating breakwaters has become common recently due to the benefits of both cost-sharing and providing offshore power supply. In this study, based on viscous computational fluid dynamics(CFD) theory, we investigated the hydrodynamic performances of the floating box and Berkeley Wedge breakwaters, both of which can also serve as WECs. A numerical wave flume model is constructed using Star-CCM+software and applied to investigate the interaction between waves and wave energy converters while completing the verification of the convergence study of time and space steps. The effects of wave length on motion response and transmission coefficient of the floating box breakwater model are studied. Comparisons of our numerical results and published experimental data indicate that Star-CCM+ is very capable of accurately modeling the nonlinear wave interaction of floating structures, while the analytical potential theory overrates the results especially around the resonant frequency. Optimal damping can be readily predicted using potential flow theory and can then be verified by CFD numerical results. Next, we investigated the relationship between wave frequencies and various coefficients using the CFD model under optimal damping, including the motion response, transmission coefficient, reflection coefficient,dissipation coefficient, and wave energy conversion efficiency. We then compared the power generation efficiencies and wave dissipation performances of the floating box and Berkeley Wedge breakwaters. The results show that the power generation efficiency of the Berkeley Wedge breakwater is always much higher than that of the floating box breakwater. Besides, the wave dissipation performance of the Berkeley Wedge breakwater is much better than that of the floating box breakwater at lower frequency. 展开更多
关键词 floating breakwater WAVE energy CONVERTER Integrated system Power generation efficiency WAVE DISSIPATION performance
下载PDF
Experimental Research on A New Type of Floating Breakwater for Wave-Absorbing and Energy-Capturing 被引量:4
8
作者 HUANG Fang-ping GONG Kai +2 位作者 LIU Zuo-shi CHEN Jun-hua HUANG Yan-chen 《China Ocean Engineering》 SCIE EI CSCD 2020年第6期817-827,共11页
To avoid the damage caused by big wind and wave in cage culture, and to solve the problem of energy supply faced by automatic breeding equipment, a new type of floating breakwater, named as Savonius double buoy breakw... To avoid the damage caused by big wind and wave in cage culture, and to solve the problem of energy supply faced by automatic breeding equipment, a new type of floating breakwater, named as Savonius double buoy breakwater(SDBB), is proposed in the paper. The floating breakwater is composed of HDPE cylindrical double buoys and horizontal axis Savonius rotors, and has the functions of wave-absorbing and energy-capturing. Based on the linear wave theory and energy conservation law, the Fourier Transform was applied to separate the two-dimensional wave frequency domain, and the energy captured by the rotors and absorbed by the floating breakwater were calculated.Experiments were conducted in a two-dimensional wave-making flume, and the transmitted waves at different wave heights and periods, the tension of mooring lines, and the rotational torque exerted on the Savonius rotor were measured. A series of performance comparison tests were also performed on the new floating breakwater and the traditional double-floating breakwater. Results show that the new floating breakwater is better than the traditional one in terms of reducing wave transmittance, and the combination of the floating breakwater with Savonius rotors can provide for marine aquaculture equipments with green power supply to a certain degree of self-sufficiency. 展开更多
关键词 floating breakwater Savonius rotor transmission coefficient wave energy capturing mooring force
下载PDF
Time-domain hydrodynamic analysis of pontoon-plate floating breakwater 被引量:4
9
作者 Zhi-jie CHEN Yong-xue WANG +1 位作者 Hua-yang DONG Bin-xin ZHENG 《Water Science and Engineering》 EI CAS 2012年第3期291-303,共13页
The hydrodynamic behaviors of a floating breakwater consisting of a rectangular pontoon and horizontal plates are studied theoretically. The fluid motion is idealized as two-dimensional linear potential flow. The moti... The hydrodynamic behaviors of a floating breakwater consisting of a rectangular pontoon and horizontal plates are studied theoretically. The fluid motion is idealized as two-dimensional linear potential flow. The motions of the floating breakwater are assumed to be two-dimensional in sway, heave, and roll. The solution to the fluid motion is derived by transforming the governing differential equation into the integral equation on the boundary in time domain with the Green's function method. The motion equations of the floating breakwater are established and solved with the fourth-order Runge-Kutta method to obtain the displacement and velocity of the breakwater. The mooring forces are computed with the static method. The computational results of the wave transmission coefficient, the motion responses, and the mooring forces of the pontoon-plate floating breakwater are given. It is indicated that the relative width of the pontoon is an important factor influencing the wave transmission coefficient of the floating breakwater. The transmission coefficient decreases obviously as the relative width of the pontoon increases. The horizontal plates help to reduce the wave transmission over the floating breakwater. The motion responses and the mooring forces of the pontoon-plate floating breakwater are less than those of the pontoon floating breakwater. The mooring force at the offshore side is larger than that at the onshore side. 展开更多
关键词 hydrodynamic analysis pontoon-plate floating breakwater transmission coefficient "motion response mooring force
下载PDF
Experimental Study on Rectangular Floating Breakwaters 被引量:1
10
作者 Yao Guoquan Ma Zhixiong Ding Bingcan Prof. Senior Engineer, River and Harbour Department, Nanjing Hydraulic Research Institute, Nanjing 210024 Senior Engineer, River and Harbour Department, Nanjing Hydraulic Research Institute, Nanjing 210024 Engineer, River and Harbour Department, Nanjing Hydraulic Research Institute, Nanjing 210024 《China Ocean Engineering》 SCIE EI 1993年第3期323-332,共10页
This paper proposes ten types of improved floating breakwaters for experiment with regular waves, based on the experience in the development and manufacture of existing floating breakwaters both at home and abroad, an... This paper proposes ten types of improved floating breakwaters for experiment with regular waves, based on the experience in the development and manufacture of existing floating breakwaters both at home and abroad, and on the results of experimental studies on the hydraulic characteristics of several types of floating breakwaters. The wave heights before and behind the breakwaters are measured, the movements of floating breakwaters are observed and the chain forces of the floating breakwaters are measured. The paper studies and compares the hydraulic characteristics of the improved rectangular floating breakwaters of which the internal and external structures and their installation methods are changed. Finally the optimal type of structure is selected through experiments. 展开更多
关键词 floating breakwater experimental study wave dissipation hydraulic characteristics
下载PDF
Comparison of Hydrodynamic Performances Between Single Pontoon and Double Pontoon Floating Breakwaters Through the SPH Method 被引量:2
11
作者 CHEN Yong-kun LIU Yong Domenico D.Meringolo 《China Ocean Engineering》 SCIE EI CSCD 2022年第6期894-910,共17页
A numerical study adopting the 2Dδ-SPH model is performed to compare the hydrodynamic characteristics of a single pontoon floating breakwater and a double pontoon floating breakwater.Numerical simulations are perform... A numerical study adopting the 2Dδ-SPH model is performed to compare the hydrodynamic characteristics of a single pontoon floating breakwater and a double pontoon floating breakwater.Numerical simulations are performed using theδ-SPH model and experimental tests are conducted to validate the numerical model.The numerical results of both the free surface elevations and motions of the floating breakwater are in good agreement with the experimental results.Numerical results show that when the pontoon drafts are larger,the double pontoon floating breakwater performs better in wave attenuations compared with the single pontoon floating breakwater,and for all the drafts,the amplitudes of motions including sway,heave and roll of the double pontoon floating breakwater is always smaller.In addition,increasing the spacing between the two pontoons can further reduce the amplitudes of pontoon motions and improve the wave attenuation ability of the double pontoon floating breakwater. 展开更多
关键词 smoothed particle hydrodynamics floating pontoon breakwater hydrodynamic characteristics experimental test
下载PDF
Experimental Study on Wave Attenuation Performance of A New Type of Floating Breakwater with Twin Pontoons and Multi Porous Vertical Plates 被引量:1
12
作者 SHEN Yu-sheng PAN Jun-ning +1 位作者 ZHOU Yi-ren WANG Xing-gang 《China Ocean Engineering》 SCIE EI CSCD 2022年第3期384-394,共11页
A floating breakwater(FB)has extensive potential applications in the fields of coastal,offshore,and ocean engineering owing to its advantages such as eco-friendliness,low cost,easy and rapid construction,and quick dis... A floating breakwater(FB)has extensive potential applications in the fields of coastal,offshore,and ocean engineering owing to its advantages such as eco-friendliness,low cost,easy and rapid construction,and quick dismantling and reinstallation.An FB composed of twin pontoons and multi-porous vertical plates is proposed to improve the wave attenuation performance.The wave attenuation performance is investigated for different FB structures and vertical plate types under different incident wave heights and periods using 2D wave physical model tests in a wave flume.The results demonstrate that the proposed FB has a better performance than that of the conventional single pontoon-type FB.It reduces the wave transmission due to its enhanced wave reflection and energy loss.The wave transmission coefficient of the proposed FB decreases with an increase in the number of layers and relative draft depth of the vertical plates.However,a further decrease in the wave transmission coefficient is not observed when the number of porous vertical plates is increased from 4 to 5 layers.An equation has been derived to predict the wave transmission of the proposed FB based on the experimental results. 展开更多
关键词 floating breakwater twin pontoons porous vertical plates layer numbers relative draft wave attenuation performance experimental model test
下载PDF
Wave Pressure Acting on V-Shaped Floating Breakwater in Random Seas
13
作者 YU Yang DING Ning +1 位作者 LIN Jie HOU Jiajia 《Journal of Ocean University of China》 SCIE CAS 2015年第6期975-981,共7页
Wave pressure on the wet surface of a V-shaped floating breakwater in random seas is investigated. Considering the diffraction effect, the unit velocity potential caused by the single regular waves around the breakwat... Wave pressure on the wet surface of a V-shaped floating breakwater in random seas is investigated. Considering the diffraction effect, the unit velocity potential caused by the single regular waves around the breakwater is solved using the finite-depth Green function and boundary element method, in which the Green function is solved by integral method. The Response-Amplitude Operator(RAO) of wave pressure is acquired according to the Longuet-Higgins' wave model and the linear Bernoulli equation. Furthermore, the wave pressure's response spectrum is calculated according to the wave spectrum by discretizing the frequency domain. The wave pressure's characteristic value corresponding to certain cumulative probability is determined according to the Rayleigh distribution of wave heights. The numerical results and field test results are compared, which indicates that the wave pressure calculated in random seas agrees with that of field measurements. It is found that the bigger angle between legs will cause the bigger pressure response, while the increase in leg length does not influence the pressure significantly. The pressure at the side of head sea is larger than that of back waves. When the incident wave angle changes from 0? to 90?, the pressure at the side of back waves decreases clearly, while at the side of head sea, the situation is more complicated and there seems no obvious tendency. The concentration of wave energy around low frequency(long wavelength) will induce bigger wave pressure, and more attention should be paid to this situation for the structure safety. 展开更多
关键词 RANDOM SEAS V-SHAPED floating breakwater wave pressure boundary element method spectrum analysis
下载PDF
Theoretical Calculation of Floating Breakwater Performance
14
作者 Lao Guosheng Feng Hong Associate Professor, Dalian University of Technology, 116024, Dalian Postgraduate, Dalian University of Technology, 116024, Dalian 《China Ocean Engineering》 SCIE EI 1992年第4期415-424,共10页
In this paper, the theoretical calculation of floating breakwater performance in regular waves with arbitrary wave direction is discussed. Under the hypothesis of linearized system and applying the strip theory, we ca... In this paper, the theoretical calculation of floating breakwater performance in regular waves with arbitrary wave direction is discussed. Under the hypothesis of linearized system and applying the strip theory, we can solve the boundary condition problems of diffraction potential and radiation potential. Introducing the asymptotic expression of the wave velocity potential at infinity and using wave energy conservation, we can separately calculate the transmitted waves generated by the sway, heave and roll motion of the floating breakwater and by the fixed breakwater. Finally, we define the amplitude ratio of the transmitted wave to the incident wave as the transmitted wave coefficient CT which describes the floating breakwater effectiveness. Two examples are given and the theoretical results obtained by the present method agree well with experimental results. 展开更多
关键词 floating breakwater fixed breakwater transmitted wave reflected wave incident wave
下载PDF
Study on Performance of Savonius Rotor Type Wave Energy Converter Used in Conjunction with Floating Breakwater
15
作者 LIU Zuo-shi GONG Kai +1 位作者 HUANG Fang-ping HUANG Yan-chen 《China Ocean Engineering》 SCIE EI CSCD 2021年第4期578-587,共10页
In the present study,the performance characteristics of a Savonius rotor type wave energy converter used in conjunction with a conventional double-buoy floating breakwater is investigated using physical model studies.... In the present study,the performance characteristics of a Savonius rotor type wave energy converter used in conjunction with a conventional double-buoy floating breakwater is investigated using physical model studies.The Savonius rotor type converter is suspended under the double-buoy floating breakwater to achieve wave attenuation while generating electricity,thereby enhancing the overall wave-elimination effect of the combination.The Savonius rotor is tested with different water submergence depths,and a reasonable relative submergence depth is determined within the scope of the research parameters.The hydrodynamics and energy capture performance of the combined breakwater with four different sizes of Savonius rotor under different wave conditions are studied,and the transmission coefficient of the experimental device is analyzed.The results show that when the optimal relative submergence depth is 0.65D,where D is the impeller diameter,there is a correspondence between the optimal performance of Savonius rotor with different rotor sizes and the wave period and wave height.The optimal energy capture efficiency of the wave energy converter reaches 17%−20.5%,and the transmission coefficient is reduced by 35%−45%compared with the conventional double-buoy breakwater. 展开更多
关键词 floating breakwater Savonius rotor energy capture efficiency transmission coefficient
下载PDF
Wave Extraction and Attenuation Performance of A Hybrid System of An Edinburgh Duck WEC and A Floating Breakwater
16
作者 ZHOU Bin-zhen WANG Yu +3 位作者 ZHANG Heng-ming JIN Peng WANG Lei ZHOU Zhao-min 《China Ocean Engineering》 SCIE EI CSCD 2022年第2期167-178,共12页
Installing the Edinburgh Duck Wave Energy Converter(ED WEC)on a floating breakwater provides a potential solution to reduce costs and improve the reliability of the ED WEC.To investigate the interactions between the E... Installing the Edinburgh Duck Wave Energy Converter(ED WEC)on a floating breakwater provides a potential solution to reduce costs and improve the reliability of the ED WEC.To investigate the interactions between the ED WEC and the breakwater,a two-dimensional numerical model of a hybrid WEC-breakwater system is established based on Star-CCM+Computational Fluid Dynamics(CFD)software.The wave energy extraction performance,wave attenuation performance,and wave forces on the breakwater of the hybrid system are compared with those of the corresponding single device.The effects of the initial attack angle,the distance between the WEC and the breakwater,and the incident wave height on the pitch motion,energy conversion efficiency,transmission coefficient,and wave forces on the breakwater of the hybrid system are analyzed.The results indicate that combing the ED WEC with a breakwater can improve the energy extraction performance of the ED WEC and reduce the wave forces on the breakwater in shorter-period waves.The conversion efficiency of the hybrid system with the initial attack angle of 42°is the largest in shorter-period waves,but is reduced with the increase of initial attack angle in longer-period waves.The wave attenuation performance of the hybrid system is determined by the draft of the breakwater.The distance between the WEC and the breakwater has little effect on the hybrid system.Wave energy extraction of the ED WEC of the hybrid system decreases significantly with the increase of the incident wave height. 展开更多
关键词 Edinburgh Duck wave energy converter floating breakwater wave energy extraction wave attenuation wave nonlinearity
下载PDF
Hydrodynamic Performance of A Dual-Floater Integrated System Com-bining Hybrid WECs and Floating Breakwaters
17
作者 FU Lei CHENG Yong 《China Ocean Engineering》 SCIE EI CSCD 2022年第6期969-979,共11页
The high investment and low return of wave energy converters(WECs)seriously hamper their large-scale commercial application.The integration of WECs and floating breakwaters is conducive to enhance the competitiveness ... The high investment and low return of wave energy converters(WECs)seriously hamper their large-scale commercial application.The integration of WECs and floating breakwaters is conducive to enhance the competitiveness of wave energy conversion.The objective of this paper is to investigate the hydrodynamic performance of a WEC-breakwater integrated system combining an upstream oscillating water column(OWC)and a downstream oscillating buoy(OB)via numerical simulations and physical experiments.A nonlinear numerical wave flume using Star-CCM+software is employed to obtain calculated results,where a tiny transverse gap is set between the flume wall and the block surface to simulate a similar two-dimensional(2D)model.The corresponding physical experiments are also carried out in a practical wave flume to verified the numerical results.The comparison of the isolated and hybrid system shows that the hybrid design leads to the decreased conversion efficiency of each WEC,but improves the transmission performance of the hybrid system.The wave resonance between two devices causes the abrupt reduction of OWC efficiency and a positive correlation exists with the OB efficiency.The total efficiency of the hybrid system is raised by an optimal opening ratio,a shallow OWC draft and a short spacing distance.Except for the OWC draft,other design parameters have weak effect on the wave attenuation of the hybrid system.This paper can help understand hydrodynamics of the hybrid WECs integrated with breakwaters and improve their performances. 展开更多
关键词 wave energy converters floating breakwater oscillating buoy oscillating water column numerical wave flume physical experiment
下载PDF
Vertical membrane floating breakwater
18
《Acta Oceanologica Sinica》 SCIE CAS CSCD 1992年第4期603-610,共8页
The basic purpose of any breakwater is to protect a harbor, moored vessels or an offshore structure from excessive incident wave attack. Breakwater can be classified as either fixed structures or floating ones. The ve... The basic purpose of any breakwater is to protect a harbor, moored vessels or an offshore structure from excessive incident wave attack. Breakwater can be classified as either fixed structures or floating ones. The vertical membrane floating breakwater which will be introduced in this paper belongs to the latter. 展开更多
关键词 Vertical membrane floating breakwater FLEXIBLE
下载PDF
Scattering of Water Waves by Dual Symmetric Inclined Floating Porous Barriers Using the DBEM
19
作者 WANG Li-xian DENG Yan-wen +1 位作者 YE Yang-sha DENG Zheng-zhi 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期156-168,共13页
The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering th... The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering that thin barriers are zero-thickness,a novel numerical method involving the the coupling of the dual boundary element method(DBEM)with damping layers is applied.In order to effectively damp out the reflected waves,two damping layers,instead of pseudoboundaries are implemented near the two side boundaries of the computational domain.Thus,the modified linearized free surface boundary conditions are formulated and used for solving both the ordinary boundary integral equation as well as the hypersingular boundary integral equation for degenerate boundaries.The newly developed numerical method is validated against analytical methods using the matched eigenfunction expansion method for the special case of two vertical barriers or the inclined angle to the vertical being zero.The influence of the length of the two damping layers has been discussed.Moreover,these findings are also validated against previous results for several cases.After validation,the numerical results for the reflection coefficient,transmission coefficient and dissipation coefficient are obtained by varying the inclination angle and porosity-effect parameter.The effects of both the inclination angle and the porosity on the amplitudes of wave forces acting on both the front and rear barriers are also investigated.It is found that the effect of the inclination angle mainly shifts the location of the extremal values of the reflection and the transmission coefficients.Additionally,a moderate value of the porosity-parameter is quite effective at dissipating wave energy and mitigating the wave loads on dual barriers. 展开更多
关键词 dual boundary element method inclined perforated floating breakwater reflection coefficient transmission coefficient damping layer
下载PDF
The influence of perforated plates on wave transmission and hydrodynamic performance of pontoon floating breakwater 被引量:4
20
作者 Chun-yan Ji Xiang Chen +1 位作者 Xiao-jian Ma Zhiming Yuan 《Journal of Hydrodynamics》 SCIE EI CSCD 2018年第3期522-530,共9页
In this study, a perforated pontoon floating breakwater(FB) consisting of an impermeable plate and a perforated plate was designed to untangle the effect of a perforated plate on wave transmission and hydrodynamic p... In this study, a perforated pontoon floating breakwater(FB) consisting of an impermeable plate and a perforated plate was designed to untangle the effect of a perforated plate on wave transmission and hydrodynamic performance of floating breakwater. A series of 2-D physical model experiments were conducted to measure the wave transmission coefficient, tension acting on the mooring line, and motion response of FB under a regular wave. The experimental results of the motion responses and mooring lines indicated that the new perforated plate was evidently effective. Furthermore, the study also discussed and analyzed the influence of the perforated plate on transmission coefficients. The experimental results showed that the new perforated plate did not lead to obvious improvement in the transmission performance 展开更多
关键词 floating breakwater perforated plates physical experiment wave transmission coefficient motion responses
原文传递
上一页 1 2 9 下一页 到第
使用帮助 返回顶部