The microstructural distribution along thickness of asymmetric twin-roll cast AZ31 magnesium alloy slab was investigated. It was found that the microstructure along the thickness of the slab was significantly inhomoge...The microstructural distribution along thickness of asymmetric twin-roll cast AZ31 magnesium alloy slab was investigated. It was found that the microstructure along the thickness of the slab was significantly inhomogeneous. There were many deformed bands with flow form near the upper surface of twin-roll cast plate. Very few deformed bands could be seen in the central part of the plate where the dendrites were thick. Fine dendritic structures dominated near the lower surface of the twin-roll cast strip. It is concluded that the shear strain caused by linear velocity difference between surfaces of upper and lower rolls results in the deformed bands of the twin-roll cast slab. Aluminum, zinc and manganese segregate to the boundary of dendrites, while silicon distributes inside the α-Mg solid solution.展开更多
Microstructure and hardness of twin-roll casting (TRC) process and direct-chill casting (DC) for A8006 alloy with and without homogenization were investigated by means of scanning electron microscopy (SEM), X-ra...Microstructure and hardness of twin-roll casting (TRC) process and direct-chill casting (DC) for A8006 alloy with and without homogenization were investigated by means of scanning electron microscopy (SEM), X-ray diffraction analysis and Vickers hardness measurement. The results show that the eutectic phase of the homogenized TRC alloy becomes fine as the microstructure of the as-cast TRC alloy is refined. The short rodlike eutectic phase of the as-cast TRC alloy is dispersed homogeneously, which is similar to the morphology of eutectic phase of the homogenized DC alloy. After homogenization, elements Fe and Mn in DC and TRC alloys are diffused from eutectic phase to A1 matrix, resulting in the decrease of microhardness. The formability of the as-cast TRC alloy is superior to that of the homogenized DC alloy. For TRC A8006 alloy, the homogenizing cycle can be removed from the subsequent processing.展开更多
Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite...Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite element modeling shows that these clusters of hard particles induce the fracture of the nano-scale lubricant oil film at first and further lead to severe deformation in the nearby aluminum foil substrate along the rolling direction. Consequently, the optical property in this region differs from that in the surroundings, resulting in surface defects.展开更多
Based on the research on the solidification of twin-roll continuous casting aluminum thin strip, the analytical model of heterogeneous nucleation, the growth kinetics of tip (KGT) and columnar dendrite transformatio...Based on the research on the solidification of twin-roll continuous casting aluminum thin strip, the analytical model of heterogeneous nucleation, the growth kinetics of tip (KGT) and columnar dendrite transformation to equiaxed dendrite (CET) of twin-roll continuous casting aluminum thin strip solidification was established by means of the principle of metal solidification and modem computer emulational technology. Meantime, based on the cellular automaton, the emulational model of twin-roll continuous casting aluminum thin strip, solidification was established. The foundation for the emulational simulation of twin-roll casting thin strip solidification structure was laid. Meanwhile, the mathematical simulation feasibility was confirmed by using the solidification process of twin-roll continuous casting aluminum thin strip.展开更多
The effects of temperature and strain rate on the flow stress behavior of twin-roll cast, rolled and heat-treated AZ31 magnesium alloys were investigated under uniaxial tension. At high temperatures, dynamic recovery,...The effects of temperature and strain rate on the flow stress behavior of twin-roll cast, rolled and heat-treated AZ31 magnesium alloys were investigated under uniaxial tension. At high temperatures, dynamic recovery, continuous dynamic recrystallization, grain boundary sliding and the activation of additional slip systems lead to an improvement of the ductility of the alloys. The elongation to failure is nearly independent of the strain rate between 473 and 523 K at 10-2 s-1 and 10-1 s-1, which is related to the strain rate dependence of the critical resolved shear stress(CRSS) for nonbasal slip. Despite the high temperature, twins are even observed at 573 K and 10-3 s-1 because they have a low CRSS.展开更多
The kinetics of recrystallization for twin-roll casting AZ31 magnesium alloy with different thicknesses during homogenization was analyzed.It is shown that fine grains are first formed at the boundaries of deformed ba...The kinetics of recrystallization for twin-roll casting AZ31 magnesium alloy with different thicknesses during homogenization was analyzed.It is shown that fine grains are first formed at the boundaries of deformed bands in the twin-roll casting slab.The recrystallized grains with no strain are gradually substituted for the deformed microstructure of twin-roll casting AZ31 magnesium alloy.The incubation temperature and time for the recrystallization of a twin-roll casting AZ31 magnesium alloy strip with a thickness of 3 mm are lower and shorter than those of the 6-mm thick strip,respectively.The 3-mm thick twin-roll casting magnesium alloy has finer grains than the 6-mm thick strip.The activation energies of recrystallization for twin-roll casting AZ31 magnesium alloy slabs with the thickness of 3 and 6 mm are 88 and 69 kJ/mol,respectively.The kinetics curves of recrystallization for twin-roll casting AZ31 magnesium alloy were obtained.展开更多
Based on traditional twin-roll casting process,Invar/Cu clad strips were successfully fabricated by using solid Invar alloy strip and molten Cu under conditions of high temperature,high pressure and plastic deformatio...Based on traditional twin-roll casting process,Invar/Cu clad strips were successfully fabricated by using solid Invar alloy strip and molten Cu under conditions of high temperature,high pressure and plastic deformation.A series of tests including tensile test,bending test,T-type peeling test and scanning electron microscope(SEM)and energy dispersive spectrometer(EDS)measurements were carried out to analyze the mechanical properties of Invar/Cu clad strips and the micro-morphology of tensile fracture surfaces and bonding interfaces.The results indicate that no delamination phenomenon occurs during the compatible deformation of Invar/Cu in bending test and only one stress platform exists in the tensile stress-strain curve when the bonding strength is large.On the contrary,different mechanical properties of Invar and Cu lead to delamination phenomenon during the uniaxial tensile test,which determines that two stress platforms occur on the stress-strain curve of Invar/Cu clad strips when two elements experience necking.The average peeling strength can be increased from13.85to42.31N/mm after heat treatment at800℃for1h,and the observation of the Cu side at peeling interface shows that more Fe is adhered on the Cu side after the heat treatment.All above illustrate that heat treatment can improve the strength of the bonding interface of Invar/Cu clad strips.展开更多
Unequal diameter twin-roll casting(UDTRC)can improve the formability,surface conditions,and production efficiency during the fabrication of clad strips.Using Fluent software,a numerical simulation is used to study the...Unequal diameter twin-roll casting(UDTRC)can improve the formability,surface conditions,and production efficiency during the fabrication of clad strips.Using Fluent software,a numerical simulation is used to study the asymmetric heat transfer characteristics of Cu/Al clad strips fabricated by UDTRC.The effects of roller velocity ratio,Cu strip thickness,and inclination angle on the kissing point position,as well as the entire temperature distribution are obtained.The heat transfer model is established,and the mechanism is discussed.The Cu strip and rollers are found to be the main causes of asymmetric heat transfer,indicating that the roller velocity ratio changes the liquid zone proportion in the molten pool.The Cu strip thickness determines the heat absorption capacity and the variations in thermal resistance between the molten Al and the big roller.The inclination angle of the small roller changes the cooling time of big roller to molten Al.Moreover,the microstructure of Al cladding under different roller velocity ratios is examined.The results show significant grain refinement caused by the shear strain along the thickness direction of Al cladding and the intense heat transfer at the moment of contact between the metal Al cladding and Cu strip.展开更多
High temperature tensile properties and microstructure evolutions of twin-roll-cast AZ31B magnesium alloy were investigated over a strain rate range from 10-3 to 1 s-1.It is suggested that the dominant deformation mec...High temperature tensile properties and microstructure evolutions of twin-roll-cast AZ31B magnesium alloy were investigated over a strain rate range from 10-3 to 1 s-1.It is suggested that the dominant deformation mechanism in the lower strain rate regimes is dislocation creep controlled by grain boundary diffusion at lower temperature and by lattice diffusion at higher temperatures,respectively.Furthermore,dislocation glide and twinning are dominant deformation mechanisms at higher strain-rate.The processing map,the effective diffusion coefficient and activation energy map of the alloy were established.The relations of microstructure evolutions to the transition temperature of dominant diffusion process,the activation energy platform and the occurrence of the full dynamic recrystallization with the maximum peak efficiency were analyzed.It is revealed that the optimum conditions for thermo-mechanical processing of the alloy are at a temperature range from 553 to 593 K,and a strain rate range from 7×10-3 to 2×10-3 s-1.展开更多
The dynamic tensile behavior of twin-roll cast-rolled and hot-rolled AZ31B magnesium alloy was characterized over strainrates ranging from 0.001 to 375 s^-1 at room temperature using an elaborate dynamic tensile testi...The dynamic tensile behavior of twin-roll cast-rolled and hot-rolled AZ31B magnesium alloy was characterized over strainrates ranging from 0.001 to 375 s^-1 at room temperature using an elaborate dynamic tensile testing method, and the relationshipbetween its mechanical properties and microstructures. It is observed that the sheet has a strong initial basal fiber texture andmechanical twinning becomes prevalent to accommodate the high-rate deformation. The yield strength and ultimate tensile strengthmonotonically increase with increasing the strain rate, while the strain hardening exponent proportionally decreases with increasingthe strain rate due to twinning-induced softening. The total elongation at fracture distinctly decreases as the strain rate increasesunder quasi-static tension, while the effect of strain rate on the total elongation is not distinct under dynamic tension. Fractographicanalysis using a scanning electron microscope reveals that the fracture is a mixed mode of ductile and brittle fracture.展开更多
Critical cooling rates for producing metallic glasses were evaluated based on a calculated continuous cooling transformation(CCT)diagram.Temperature distributions of the melt in molten pool in the vertical type twin-r...Critical cooling rates for producing metallic glasses were evaluated based on a calculated continuous cooling transformation(CCT)diagram.Temperature distributions of the melt in molten pool in the vertical type twin-roll casting(VTRC)process of metallic glasses were simulated,and cooling rates under different casting conditions were calculated with the simulated results.By comparing the results obtained by CCT diagrams and simulation,the possibility of producing metallic glasses by the VTRC method and influences of casting conditions on cooling rate were discussed.The results reveal that cooling rate with3or4orders of magnitude by the VTRC process can be attained in producing Mg-based metallic glasses,which is faster than the critical cooling rate calculated by the CCT diagram.One side pouring mode can improve the temperature distributions of casting pool.VTRC process has a good ability in continuous casting metallic glassy thin strips.展开更多
Thepurpose of the present paper is to study the mechanical propertiesand microstructureof the twin-roll cast and cold rolled AA5083 aluminum alloy sheet in strain-hardened H321 temper. To reach this goal, first, a sou...Thepurpose of the present paper is to study the mechanical propertiesand microstructureof the twin-roll cast and cold rolled AA5083 aluminum alloy sheet in strain-hardened H321 temper. To reach this goal, first, a sound surface slab of 8.90 mm thick and 1260 mm wide was cast by a 15°; tilt back twin roll caster at a casting speed of 490 mm/min. After homogenization at 520 ℃, the product was cold rolled to two thicknesses of 6.30 mm and 3.85 mm with an intermediate annealing at 370 ℃ and final stabilization at 180 ℃. Opticalmicroscopyand scanning electron microscopy (SEM) investigations of the as-cast state depicted the segregation of intermetallic particles mainly in grain boundaries which wasthe cause of grain removal observed in the fracture surface of tensile test samples. In addition, mechanical properties indicated an increase in total elongation after homogenization heat treatment dueto the elimination of the grain boundary segregations. Finally, it was observed that the properties of the 3.85 mmthick sheet were consistent with the H321 temper requirements according to ASTM B 290M standard due to applying sufficient cold reduction during cold rolling stage.展开更多
The mechanical properties and product thickness specifications of bimetallic clad strip prepared by twin-roll casting are tightly related to the mechanical behavior of bonding interface interaction.The thermal−flow co...The mechanical properties and product thickness specifications of bimetallic clad strip prepared by twin-roll casting are tightly related to the mechanical behavior of bonding interface interaction.The thermal−flow coupled simulation and the interface pressure calculation models are established with the cast-rolling velocity as the variable.The results show that the interface temperature decreases,the interface pressure and the proportion of the thickness of the Al side increase with the decrease in cast-rolling velocity.The thinning of Cu strip mainly occurs in the backward slip zone.The higher pressure and longer solid/semi-solid contact time make the interface bonded fully,which provides favorable conditions for atomic diffusion.The inter-diffusion zone with a width of 4.9μm is attained at a cast-rolling velocity of 2.4 m/min,and the Cu side surface is nearly completely covered by aluminum.Therefore,the ductile fracture occurs on the Al side,which prevents the propagation of interface delamination cracks effectively.Meanwhile,shear effect becomes more significant at high interfacial pressure and large plastic strain,and the microstructure on Al side is composed of slender columnar crystals.Thus,the metallurgical bonding and refinement of grains on the Al side can result in higher bonding strength and tensile properties of the clad strip.展开更多
A newly developed technology for manufacturing magnesium alloy strip,vertical twin-roll strip casting,has been described.This manufacturing process is easy to be facilitated in an economical way to manufacture wrought...A newly developed technology for manufacturing magnesium alloy strip,vertical twin-roll strip casting,has been described.This manufacturing process is easy to be facilitated in an economical way to manufacture wrought magnesium alloy strips. As an example,AZ31 magnesium alloy was used to investigate the appropriate manufacturing conditions for vertical twin-roll strip casting by varying the temperatures of the molten materials and rolling speeds.The effects of manufacturing conditions on forming quality were clarified in terms of roll speeds and casting temperature.In addition,microscopic observation and X-ray diffraction of the as-cast strips were performed.It has been determined that AZ31 alloy strip of 1-3 mm in thickness can be produced at a speed of 30 m/min by a vertical twin-roll caster.The microstructure of as-cast strip only containsα-phase(Mg)and no other phase,and the twin-roll casting process can effectively refine the grain size.The fine equiaxed grain of as-cast strips is beneficial to the plastic deformation of the strips,and it is also suitable for direct cold-rolling with a maximum cold-rolling reduction of 40%.展开更多
The netlike eutectic carbide in twin-roll casting strip of W9Cr4V2 was dissolved and broken up gradually with increasing heating temperature during annealing treatment.Almost all eutectic carbides exist in granular fo...The netlike eutectic carbide in twin-roll casting strip of W9Cr4V2 was dissolved and broken up gradually with increasing heating temperature during annealing treatment.Almost all eutectic carbides exist in granular form with heating temperature up to 950 ℃.It is considered that the refining of lamellar spacing made it possible for eutectic carbide to be granulated.展开更多
Twin roll casting method is a promising route to directly produce magnesium alloy strip. It is a rapid solidification process with high temperature gradient combined with thermal flow and rolling deformation in the ca...Twin roll casting method is a promising route to directly produce magnesium alloy strip. It is a rapid solidification process with high temperature gradient combined with thermal flow and rolling deformation in the casting region. As-cast strip with proper microstructure is requested to serve as next rolling feedstock. However the microstructure of as-cast strip is sensitive for casting conditions during the casting process and the as-cast microstructure greatly affects the mechanical properties. In this work, the effect of casting speed, pouring temperature, deformation as well as anneal process on microstructure and mechanical properties were investigated. The results revels that twin-roll casting process can effectively refine the grain size, improve the morphology and distribution states of Mg17Al12. The homogenization treatment time can be shorted for the fine microstructure and lower the cost dramatically for the next forming process.展开更多
The microstructures in the solidification process of aluminum twin-roll casting was simulated based on CA(Cellular Automation Method),and the nucleation model based on the normal distribution and KUZR-GIOVANOLS-TRIVED...The microstructures in the solidification process of aluminum twin-roll casting was simulated based on CA(Cellular Automation Method),and the nucleation model based on the normal distribution and KUZR-GIOVANOLS-TRIVEDI(KGT) growth model were used in the calculation. FDM(Finite Difference Method) combined with relative motion was used,and dynamic evolution of microstructures in the process of aluminum twin-roll casting was achieved. Visual Fortran programming language was adopted to calculate and realize the image post-processing. Moreover,the effect of different casting process parameters on the formation of the microstructures was simulated. The results are helpful to explaining the dendritic segregation and size segregation as well as shrinkage-porosity defects. Columnar grains mainly distribute near the casting roller while equiaxed grains distributed far away from the casting roller.展开更多
Nucleation and growth model based on Cellular Automation(CA) incorporated with macro heat transfer calculation was presented to simulate the microstructure of aluminum twin-roll casting. The dynamics model of dendrite...Nucleation and growth model based on Cellular Automation(CA) incorporated with macro heat transfer calculation was presented to simulate the microstructure of aluminum twin-roll casting. The dynamics model of dendrite tip (KGT model) was amended in view of characteristics of aluminum twin-roll casting. Through the numerical simulation on solidification structure under different casting speeds, it can be seen that when the casting speed is 1.3 m/min, that is, under conditions of conventional roll casting, coarse columnar grains dominate the solidification structure, and equiaxed grains exist in the center of aluminum strip. When the casting speed continuously increases to 8 m/min, that is, under the conditions of thin-gauge high-speed casting, columnar grains in solidification structure all convert into equiaxed grains. Experimental and numerical results agree well.展开更多
By optical inspection of macro-etched metallography and electron back-scattered diffraction (EBSD) mapping, this paper analyzed the microstructure of austenitic stainless steel strips produced with an equal-diameter...By optical inspection of macro-etched metallography and electron back-scattered diffraction (EBSD) mapping, this paper analyzed the microstructure of austenitic stainless steel strips produced with an equal-diameter twin-roll strip caster. The results indicate that the microstructure of the strips includes two columnar zones with highly compact dendrites and one equiaxed zone. The characteristics, such as grain size and growing direction of columnar grains and equiaxed grains, were investigated. An additional transitional area with many finer grains between the columnar zone and the equiaxed zone was found. As shown in EBSD analysis, small angle boundaries exist both in the columnar zone and the equiaxed zone, although they are especially more in the transitional area. Additionally, some 〈111〉 twin boundaries were found in the microstructure of the strips.展开更多
基金Project (2006BAE04B02) supported by the National Key Technology R&D Program during the 11th Five-Year Plan of China
文摘The microstructural distribution along thickness of asymmetric twin-roll cast AZ31 magnesium alloy slab was investigated. It was found that the microstructure along the thickness of the slab was significantly inhomogeneous. There were many deformed bands with flow form near the upper surface of twin-roll cast plate. Very few deformed bands could be seen in the central part of the plate where the dendrites were thick. Fine dendritic structures dominated near the lower surface of the twin-roll cast strip. It is concluded that the shear strain caused by linear velocity difference between surfaces of upper and lower rolls results in the deformed bands of the twin-roll cast slab. Aluminum, zinc and manganese segregate to the boundary of dendrites, while silicon distributes inside the α-Mg solid solution.
基金Project (42-QP-009) supported by Research Fund of the State Key Laboratory of Solidification Processing,ChinaProject (Z2012019) supported by Graduate Starting Seed Fund of Northwestern Polytechnical University,ChinaProject (B08040) supported by 111 Project
文摘Microstructure and hardness of twin-roll casting (TRC) process and direct-chill casting (DC) for A8006 alloy with and without homogenization were investigated by means of scanning electron microscopy (SEM), X-ray diffraction analysis and Vickers hardness measurement. The results show that the eutectic phase of the homogenized TRC alloy becomes fine as the microstructure of the as-cast TRC alloy is refined. The short rodlike eutectic phase of the as-cast TRC alloy is dispersed homogeneously, which is similar to the morphology of eutectic phase of the homogenized DC alloy. After homogenization, elements Fe and Mn in DC and TRC alloys are diffused from eutectic phase to A1 matrix, resulting in the decrease of microhardness. The formability of the as-cast TRC alloy is superior to that of the homogenized DC alloy. For TRC A8006 alloy, the homogenizing cycle can be removed from the subsequent processing.
基金Project(51074117)supported by the National Natural Science Foundation of ChinaProject(2009CDA044)supported by the Foundation for Distinguished Young Scientists of Hubei Province,ChinaProjects(201104493,20100471161)supported by the China Postdoctoral Science Foundation
文摘Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite element modeling shows that these clusters of hard particles induce the fracture of the nano-scale lubricant oil film at first and further lead to severe deformation in the nearby aluminum foil substrate along the rolling direction. Consequently, the optical property in this region differs from that in the surroundings, resulting in surface defects.
基金Project (u0837601) supported by the New Joint Fund of National Natural Science Foundation of ChinaProject (50874054) supported by the National Natural Science Foundation of China
文摘Based on the research on the solidification of twin-roll continuous casting aluminum thin strip, the analytical model of heterogeneous nucleation, the growth kinetics of tip (KGT) and columnar dendrite transformation to equiaxed dendrite (CET) of twin-roll continuous casting aluminum thin strip solidification was established by means of the principle of metal solidification and modem computer emulational technology. Meantime, based on the cellular automaton, the emulational model of twin-roll continuous casting aluminum thin strip, solidification was established. The foundation for the emulational simulation of twin-roll casting thin strip solidification structure was laid. Meanwhile, the mathematical simulation feasibility was confirmed by using the solidification process of twin-roll continuous casting aluminum thin strip.
基金financial support by the European Social Fund (project No. 080943441)
文摘The effects of temperature and strain rate on the flow stress behavior of twin-roll cast, rolled and heat-treated AZ31 magnesium alloys were investigated under uniaxial tension. At high temperatures, dynamic recovery, continuous dynamic recrystallization, grain boundary sliding and the activation of additional slip systems lead to an improvement of the ductility of the alloys. The elongation to failure is nearly independent of the strain rate between 473 and 523 K at 10-2 s-1 and 10-1 s-1, which is related to the strain rate dependence of the critical resolved shear stress(CRSS) for nonbasal slip. Despite the high temperature, twins are even observed at 573 K and 10-3 s-1 because they have a low CRSS.
基金Financial supports from The National Natural Science Foundation of China(Nos.51625402,51790483,51801069 and U19A2084)are greatly acknowledgedPartial financial support came from The Science and Technology Devel-opment Program of Jilin Province(Nos.20190901010JC,20190103003JH,20200401025GX and 20200201002JC)The Changjiang Scholars Program(T2017035).
文摘The kinetics of recrystallization for twin-roll casting AZ31 magnesium alloy with different thicknesses during homogenization was analyzed.It is shown that fine grains are first formed at the boundaries of deformed bands in the twin-roll casting slab.The recrystallized grains with no strain are gradually substituted for the deformed microstructure of twin-roll casting AZ31 magnesium alloy.The incubation temperature and time for the recrystallization of a twin-roll casting AZ31 magnesium alloy strip with a thickness of 3 mm are lower and shorter than those of the 6-mm thick strip,respectively.The 3-mm thick twin-roll casting magnesium alloy has finer grains than the 6-mm thick strip.The activation energies of recrystallization for twin-roll casting AZ31 magnesium alloy slabs with the thickness of 3 and 6 mm are 88 and 69 kJ/mol,respectively.The kinetics curves of recrystallization for twin-roll casting AZ31 magnesium alloy were obtained.
基金Project (51474189) supported by the National Natural Science Foundation of ChinaProject (E2018203446) supported by the Excellent Youth Foundation of Hebei Scientific Committee,ChinaProject (QN2015214) supported by the Educational Commission of Hebei Province,China
文摘Based on traditional twin-roll casting process,Invar/Cu clad strips were successfully fabricated by using solid Invar alloy strip and molten Cu under conditions of high temperature,high pressure and plastic deformation.A series of tests including tensile test,bending test,T-type peeling test and scanning electron microscope(SEM)and energy dispersive spectrometer(EDS)measurements were carried out to analyze the mechanical properties of Invar/Cu clad strips and the micro-morphology of tensile fracture surfaces and bonding interfaces.The results indicate that no delamination phenomenon occurs during the compatible deformation of Invar/Cu in bending test and only one stress platform exists in the tensile stress-strain curve when the bonding strength is large.On the contrary,different mechanical properties of Invar and Cu lead to delamination phenomenon during the uniaxial tensile test,which determines that two stress platforms occur on the stress-strain curve of Invar/Cu clad strips when two elements experience necking.The average peeling strength can be increased from13.85to42.31N/mm after heat treatment at800℃for1h,and the observation of the Cu side at peeling interface shows that more Fe is adhered on the Cu side after the heat treatment.All above illustrate that heat treatment can improve the strength of the bonding interface of Invar/Cu clad strips.
基金Project(51974278)supported by the National Natural Science Foundation of ChinaProject(E2018203446)supported by the Natural Science Foundation of Hebei Province Distinguished Young Fund Project,ChinaProject(2018YFA0707303)supported by the National Key Research and Development Project of China。
文摘Unequal diameter twin-roll casting(UDTRC)can improve the formability,surface conditions,and production efficiency during the fabrication of clad strips.Using Fluent software,a numerical simulation is used to study the asymmetric heat transfer characteristics of Cu/Al clad strips fabricated by UDTRC.The effects of roller velocity ratio,Cu strip thickness,and inclination angle on the kissing point position,as well as the entire temperature distribution are obtained.The heat transfer model is established,and the mechanism is discussed.The Cu strip and rollers are found to be the main causes of asymmetric heat transfer,indicating that the roller velocity ratio changes the liquid zone proportion in the molten pool.The Cu strip thickness determines the heat absorption capacity and the variations in thermal resistance between the molten Al and the big roller.The inclination angle of the small roller changes the cooling time of big roller to molten Al.Moreover,the microstructure of Al cladding under different roller velocity ratios is examined.The results show significant grain refinement caused by the shear strain along the thickness direction of Al cladding and the intense heat transfer at the moment of contact between the metal Al cladding and Cu strip.
基金Project(3093024) supported by the Natural Science Foundation of Beijing, China Project(2007XM035) supported by the Science Foundation of Beijing Jiaotong University
文摘High temperature tensile properties and microstructure evolutions of twin-roll-cast AZ31B magnesium alloy were investigated over a strain rate range from 10-3 to 1 s-1.It is suggested that the dominant deformation mechanism in the lower strain rate regimes is dislocation creep controlled by grain boundary diffusion at lower temperature and by lattice diffusion at higher temperatures,respectively.Furthermore,dislocation glide and twinning are dominant deformation mechanisms at higher strain-rate.The processing map,the effective diffusion coefficient and activation energy map of the alloy were established.The relations of microstructure evolutions to the transition temperature of dominant diffusion process,the activation energy platform and the occurrence of the full dynamic recrystallization with the maximum peak efficiency were analyzed.It is revealed that the optimum conditions for thermo-mechanical processing of the alloy are at a temperature range from 553 to 593 K,and a strain rate range from 7×10-3 to 2×10-3 s-1.
基金supported by the German Aerospace Center (DLR) project “Next Generation Car”
文摘The dynamic tensile behavior of twin-roll cast-rolled and hot-rolled AZ31B magnesium alloy was characterized over strainrates ranging from 0.001 to 375 s^-1 at room temperature using an elaborate dynamic tensile testing method, and the relationshipbetween its mechanical properties and microstructures. It is observed that the sheet has a strong initial basal fiber texture andmechanical twinning becomes prevalent to accommodate the high-rate deformation. The yield strength and ultimate tensile strengthmonotonically increase with increasing the strain rate, while the strain hardening exponent proportionally decreases with increasingthe strain rate due to twinning-induced softening. The total elongation at fracture distinctly decreases as the strain rate increasesunder quasi-static tension, while the effect of strain rate on the total elongation is not distinct under dynamic tension. Fractographicanalysis using a scanning electron microscope reveals that the fracture is a mixed mode of ductile and brittle fracture.
基金support from the High-Tech Research CenterNano-technology Project at Saitama Institute of Technology,Japan
文摘Critical cooling rates for producing metallic glasses were evaluated based on a calculated continuous cooling transformation(CCT)diagram.Temperature distributions of the melt in molten pool in the vertical type twin-roll casting(VTRC)process of metallic glasses were simulated,and cooling rates under different casting conditions were calculated with the simulated results.By comparing the results obtained by CCT diagrams and simulation,the possibility of producing metallic glasses by the VTRC method and influences of casting conditions on cooling rate were discussed.The results reveal that cooling rate with3or4orders of magnitude by the VTRC process can be attained in producing Mg-based metallic glasses,which is faster than the critical cooling rate calculated by the CCT diagram.One side pouring mode can improve the temperature distributions of casting pool.VTRC process has a good ability in continuous casting metallic glassy thin strips.
文摘Thepurpose of the present paper is to study the mechanical propertiesand microstructureof the twin-roll cast and cold rolled AA5083 aluminum alloy sheet in strain-hardened H321 temper. To reach this goal, first, a sound surface slab of 8.90 mm thick and 1260 mm wide was cast by a 15°; tilt back twin roll caster at a casting speed of 490 mm/min. After homogenization at 520 ℃, the product was cold rolled to two thicknesses of 6.30 mm and 3.85 mm with an intermediate annealing at 370 ℃ and final stabilization at 180 ℃. Opticalmicroscopyand scanning electron microscopy (SEM) investigations of the as-cast state depicted the segregation of intermetallic particles mainly in grain boundaries which wasthe cause of grain removal observed in the fracture surface of tensile test samples. In addition, mechanical properties indicated an increase in total elongation after homogenization heat treatment dueto the elimination of the grain boundary segregations. Finally, it was observed that the properties of the 3.85 mmthick sheet were consistent with the H321 temper requirements according to ASTM B 290M standard due to applying sufficient cold reduction during cold rolling stage.
基金the financial support from the National Natural Science Foundation of China (No. 51974278)the Natural Science Foundation of Hebei Province Distinguished Young Fund Project, China (No. E2018203446)the National Foundation of Key Research and Development Project of China (No. 2018YFA0707303)
文摘The mechanical properties and product thickness specifications of bimetallic clad strip prepared by twin-roll casting are tightly related to the mechanical behavior of bonding interface interaction.The thermal−flow coupled simulation and the interface pressure calculation models are established with the cast-rolling velocity as the variable.The results show that the interface temperature decreases,the interface pressure and the proportion of the thickness of the Al side increase with the decrease in cast-rolling velocity.The thinning of Cu strip mainly occurs in the backward slip zone.The higher pressure and longer solid/semi-solid contact time make the interface bonded fully,which provides favorable conditions for atomic diffusion.The inter-diffusion zone with a width of 4.9μm is attained at a cast-rolling velocity of 2.4 m/min,and the Cu side surface is nearly completely covered by aluminum.Therefore,the ductile fracture occurs on the Al side,which prevents the propagation of interface delamination cracks effectively.Meanwhile,shear effect becomes more significant at high interfacial pressure and large plastic strain,and the microstructure on Al side is composed of slender columnar crystals.Thus,the metallurgical bonding and refinement of grains on the Al side can result in higher bonding strength and tensile properties of the clad strip.
基金Project(2006CB605208-1) support by the National Basic Research Program of ChinaProject(20050145021) support by the Doctoral Program Foundation of Ministry of Education of China
文摘A newly developed technology for manufacturing magnesium alloy strip,vertical twin-roll strip casting,has been described.This manufacturing process is easy to be facilitated in an economical way to manufacture wrought magnesium alloy strips. As an example,AZ31 magnesium alloy was used to investigate the appropriate manufacturing conditions for vertical twin-roll strip casting by varying the temperatures of the molten materials and rolling speeds.The effects of manufacturing conditions on forming quality were clarified in terms of roll speeds and casting temperature.In addition,microscopic observation and X-ray diffraction of the as-cast strips were performed.It has been determined that AZ31 alloy strip of 1-3 mm in thickness can be produced at a speed of 30 m/min by a vertical twin-roll caster.The microstructure of as-cast strip only containsα-phase(Mg)and no other phase,and the twin-roll casting process can effectively refine the grain size.The fine equiaxed grain of as-cast strips is beneficial to the plastic deformation of the strips,and it is also suitable for direct cold-rolling with a maximum cold-rolling reduction of 40%.
基金Item Sponsored by National Natural Science Foundation of China(59995440)State Fundamental Research Project of China(G2000067208-4)
文摘The netlike eutectic carbide in twin-roll casting strip of W9Cr4V2 was dissolved and broken up gradually with increasing heating temperature during annealing treatment.Almost all eutectic carbides exist in granular form with heating temperature up to 950 ℃.It is considered that the refining of lamellar spacing made it possible for eutectic carbide to be granulated.
文摘Twin roll casting method is a promising route to directly produce magnesium alloy strip. It is a rapid solidification process with high temperature gradient combined with thermal flow and rolling deformation in the casting region. As-cast strip with proper microstructure is requested to serve as next rolling feedstock. However the microstructure of as-cast strip is sensitive for casting conditions during the casting process and the as-cast microstructure greatly affects the mechanical properties. In this work, the effect of casting speed, pouring temperature, deformation as well as anneal process on microstructure and mechanical properties were investigated. The results revels that twin-roll casting process can effectively refine the grain size, improve the morphology and distribution states of Mg17Al12. The homogenization treatment time can be shorted for the fine microstructure and lower the cost dramatically for the next forming process.
基金Project(50564004) supported by the National Natural Science Foundation of ChinaProject(G2000067208-3) supported by the National Basic Research Program of ChinaProject(0250020) supported by the Natural Science Foundation of Jiangxi Province, China
文摘The microstructures in the solidification process of aluminum twin-roll casting was simulated based on CA(Cellular Automation Method),and the nucleation model based on the normal distribution and KUZR-GIOVANOLS-TRIVEDI(KGT) growth model were used in the calculation. FDM(Finite Difference Method) combined with relative motion was used,and dynamic evolution of microstructures in the process of aluminum twin-roll casting was achieved. Visual Fortran programming language was adopted to calculate and realize the image post-processing. Moreover,the effect of different casting process parameters on the formation of the microstructures was simulated. The results are helpful to explaining the dendritic segregation and size segregation as well as shrinkage-porosity defects. Columnar grains mainly distribute near the casting roller while equiaxed grains distributed far away from the casting roller.
基金Project(50564004) supported by the National Natural Science Foundation of ChinaProject(G2000067208-3) supported by the National Basic Research Program of ChinaProject(0250020) supported by the Natural Science Foundation of Jiangxi Province, China
文摘Nucleation and growth model based on Cellular Automation(CA) incorporated with macro heat transfer calculation was presented to simulate the microstructure of aluminum twin-roll casting. The dynamics model of dendrite tip (KGT model) was amended in view of characteristics of aluminum twin-roll casting. Through the numerical simulation on solidification structure under different casting speeds, it can be seen that when the casting speed is 1.3 m/min, that is, under conditions of conventional roll casting, coarse columnar grains dominate the solidification structure, and equiaxed grains exist in the center of aluminum strip. When the casting speed continuously increases to 8 m/min, that is, under the conditions of thin-gauge high-speed casting, columnar grains in solidification structure all convert into equiaxed grains. Experimental and numerical results agree well.
基金supported by the National Natural Science Foundation of China (No. 50434040)
文摘By optical inspection of macro-etched metallography and electron back-scattered diffraction (EBSD) mapping, this paper analyzed the microstructure of austenitic stainless steel strips produced with an equal-diameter twin-roll strip caster. The results indicate that the microstructure of the strips includes two columnar zones with highly compact dendrites and one equiaxed zone. The characteristics, such as grain size and growing direction of columnar grains and equiaxed grains, were investigated. An additional transitional area with many finer grains between the columnar zone and the equiaxed zone was found. As shown in EBSD analysis, small angle boundaries exist both in the columnar zone and the equiaxed zone, although they are especially more in the transitional area. Additionally, some 〈111〉 twin boundaries were found in the microstructure of the strips.