In ships having two rudders, an angle error exists if there is a difference in structural and electrical parameters in two steering gear systems. Such an error also results in reduced efficiency of ship maneuverabilit...In ships having two rudders, an angle error exists if there is a difference in structural and electrical parameters in two steering gear systems. Such an error also results in reduced efficiency of ship maneuverability during navigation. For the sake of reducing the angle error, a synchro-ballistic control approach based on cloud model is proposed in this paper. First, the mechanism model of steering gear system is introduced. Second, the structure of synchro-control system of twin-rudder is proposed based on the master-slave control strategy. Third, synchro-ballistic controller based on cloud model is designed to solve the nonlinearity and uncertainty of system. Finally, the designed controller is tested via simulation under two different situations. The simulated results demonstrate that this method is simple and has stronger robustness against the variation of states and parameters of plants. Hence, the validity and reliability of the method is proved for synchro-control of two rudders, which is a significant engineering application.展开更多
基金supported by National Natural Science Foundation of China (No.51079033,No.60704004)the Fundamental Research Funds for the Central Universities (No.HEUCFR1009)
文摘In ships having two rudders, an angle error exists if there is a difference in structural and electrical parameters in two steering gear systems. Such an error also results in reduced efficiency of ship maneuverability during navigation. For the sake of reducing the angle error, a synchro-ballistic control approach based on cloud model is proposed in this paper. First, the mechanism model of steering gear system is introduced. Second, the structure of synchro-control system of twin-rudder is proposed based on the master-slave control strategy. Third, synchro-ballistic controller based on cloud model is designed to solve the nonlinearity and uncertainty of system. Finally, the designed controller is tested via simulation under two different situations. The simulated results demonstrate that this method is simple and has stronger robustness against the variation of states and parameters of plants. Hence, the validity and reliability of the method is proved for synchro-control of two rudders, which is a significant engineering application.