The microstructure of semi-solid slurry of AZ91D alloy, which was produced by twin-screw stirring mixer under the different parameters, was investigated.Rheoforming by cold chamber die casting process was performed th...The microstructure of semi-solid slurry of AZ91D alloy, which was produced by twin-screw stirring mixer under the different parameters, was investigated.Rheoforming by cold chamber die casting process was performed thereafter. The results indicate that with decreasing of the barrel temperature of the mixer and the pouring temperature of molten Mg alloy, the solid fraction of semi-solid slurry increases and the size of non-dendritic grains becomes smaller. While the shear rate increases, the solid fraction of semi-solid slurry decreases. The tensile strength and elongation of metal rheoformed by die casting are higher by about 37% and 44% respectively than those produced by conventional liquid die casting.展开更多
Wall slip boundary condition is first introduced into twin-screw extrusion with the Navier slip law. Three-dimensional isothermal flow in the twin-screw extruder is simulated by using the finite element package POLYFL...Wall slip boundary condition is first introduced into twin-screw extrusion with the Navier slip law. Three-dimensional isothermal flow in the twin-screw extruder is simulated by using the finite element package POLYFLOW. Profiles of velocity contours in the screw channel and shear rate distributions in the intermeshing region are presented for different slip coefficients. Curves of axial pressure difference, average shear rate and dispersive mixing index vs. the slip coefficient are plotted and discussed. Comparisons are also made between the wall slip conditions and the non-slip condition. The simulation results indicate that, as the level of wall slip decreases, the axial pressure difference rises, the shear effect is intensified and the axial mixing is also enhanced. All these flow characteristics seem to level off with the increase of the slip coefficient. However, because of the inherent limitation of the Navier slip law, use of an overestimated slip coefficient would predict an over-sticky state between the screw surface and the polymer melt.展开更多
In order to facilitate the teaching of industrial processes and experiments on the twin-screw extruder control debugging,and be closer to the actual testing,to reduce the debugging costs and the risk of debugging proc...In order to facilitate the teaching of industrial processes and experiments on the twin-screw extruder control debugging,and be closer to the actual testing,to reduce the debugging costs and the risk of debugging process,the paper designs a hardware-in-loop simulation of twin-screw extruder experiment system which is closer to scene,low cost and high safety.The system through the establishment of twin-screw extruder’s mathematical model on computer to simulate the realistic system and there is hardware practicality in the computer simulation loop.The hardware based on C8051F020 can operate in the simulation loop in real time.In computer software design, we desigh man-machine interface that is intuitive and easy to operate,can reflect twin-screw extruder main operation information vividly.Finally,twin-screw extruder’s 3 heater temperature mathematical model and PID incremental control algorithm are presented.展开更多
The HA/UHMWPE nanocomposite is compounded by twin-screw extrusion of the HA and UHMWPE powder mixture in paraffin oil and then compression molded to a sheet form. TGA measurement shows the HA weight loss after proces...The HA/UHMWPE nanocomposite is compounded by twin-screw extrusion of the HA and UHMWPE powder mixture in paraffin oil and then compression molded to a sheet form. TGA measurement shows the HA weight loss after processing is about 1%-2% . FTIR spectra indicate the paraaffin oil residue is trivial and UHMWPE is not oxidized. SEM reveals the HA nano particles are homogeneously dispersed by twin-screw extrusion and the inter-particle spaces are penetrated with UHMWPE fibrils by swelling treatment. HRTEM image indicates the HA particles and UHMWPE are intimately contacted by mechanical interlocking. Compared with the unfilled UHMWPE, stiffness of the composite with the HA volume fraction 0. 23 was significantly enhanced to 9 times without detriment of the yield strength and the ductility.展开更多
Sugar palm(Arenga pinnata)starch is considered an important renewable,biodegradable,and eco-friendly polymer,which is derived from agricultural by-products and residues,with great potential for the development of bioc...Sugar palm(Arenga pinnata)starch is considered an important renewable,biodegradable,and eco-friendly polymer,which is derived from agricultural by-products and residues,with great potential for the development of biocomposite materials.This research was aimed at investigating the development of TPS biocomposites from A.pinnata palm starch using an extrusion process.Palm starch,glycerol,and stearic acid were extruded in a twin-screw extruder.Scanning electron microscopy(SEM)analysis of TPS showed that the starch granules were damaged and gelatinized in the extrusion process.The density of TPS was 1.3695 g/mL,lower than that of palm starch,and the addition of stearic acid resulted in increased TPS density.X-ray diffraction(XRD)results showed that palm starch had a C-type pattern crystalline structure.The tensile strength,elongation at break,and modulus of elasticity of TPS were 7.19 MPa,33.95%,and 0.56 GPa,respectively.The addition of stearic acid reduced the tensile strength,elongation at break and modulus of elasticity of TPS.The rheological properties,i.e.,melt flow rate(MFR)and viscosity of TPS,were 7.13 g/10 min and 2482.19 Pa.s,respectively.The presence of stearic acid in TPS resulted in increased MFR and decreased viscosity values.The peak gelatinization temperature of A.pinnata palm starch was 70°C,while Tg of TPS was 65°C.The addition of stearic acid reduced the Tg of TPS.The thermogravimetric analysis(TGA)analysis showed that the addition of glycerol and stearic acid decreased the thermal stability,but extended the temperature range of thermal degradation.TPS derived from A.pinnata palm starch by extrusion method has the potential to be applied in industrial practice as a promising raw material for manufacturing bio-based packaging as a sustainable and green alternative to petroleum-based plastics.展开更多
One improved mixing-extruding machine was introduced as the second-generation product of the mixing-molding integrated technology. In the extruding system,the conventional single screw extruder was substituted by a sp...One improved mixing-extruding machine was introduced as the second-generation product of the mixing-molding integrated technology. In the extruding system,the conventional single screw extruder was substituted by a special conical twin-screw extruder,resulting in stronger feeding ability,more stable extrusion pressure,and better quality of products. The integrated mathematical model of mixing-extruding process was also established by theoretical derivation and optimization according to the experimental results.Then its accuracy was verified by the influences of the pressure of floating weight and the cooling water temperature of extruder on the mixing-extruding integrated process. The results showed that the changes of both parameters could give rise to the fluctuation of the temperature and apparent viscosity of polyblends, thus further influencing the screw rotation speed.展开更多
This paper presents a comparative analysis between single and twin-screw propulsion systems of a bulk carrier to evaluate the ship and propeller performance in terms of fuel consumption as well as to discuss the cavit...This paper presents a comparative analysis between single and twin-screw propulsion systems of a bulk carrier to evaluate the ship and propeller performance in terms of fuel consumption as well as to discuss the cavitation and noise criteria.An optimization model is developed to select the optimum propeller geometry and operational point along the engine load diagram for the selected engines of each case.The engines are selected from the same series due to the same behaviour along the engine load diagram.The propellers are selected from the B-series as fixed-pitch propellers.It has been concluded that while the components of the single-screw propulsion system are larger than the twin-screw,the single-screw propulsion system shows a reduction in fuel consumption than the twin screw by around 19%,thus affecting the amount of exhaust emissions from the ship.This model helps the ship designers to select a suitable propeller to improve the energy efficiency of the ships.展开更多
文摘The microstructure of semi-solid slurry of AZ91D alloy, which was produced by twin-screw stirring mixer under the different parameters, was investigated.Rheoforming by cold chamber die casting process was performed thereafter. The results indicate that with decreasing of the barrel temperature of the mixer and the pouring temperature of molten Mg alloy, the solid fraction of semi-solid slurry increases and the size of non-dendritic grains becomes smaller. While the shear rate increases, the solid fraction of semi-solid slurry decreases. The tensile strength and elongation of metal rheoformed by die casting are higher by about 37% and 44% respectively than those produced by conventional liquid die casting.
文摘Wall slip boundary condition is first introduced into twin-screw extrusion with the Navier slip law. Three-dimensional isothermal flow in the twin-screw extruder is simulated by using the finite element package POLYFLOW. Profiles of velocity contours in the screw channel and shear rate distributions in the intermeshing region are presented for different slip coefficients. Curves of axial pressure difference, average shear rate and dispersive mixing index vs. the slip coefficient are plotted and discussed. Comparisons are also made between the wall slip conditions and the non-slip condition. The simulation results indicate that, as the level of wall slip decreases, the axial pressure difference rises, the shear effect is intensified and the axial mixing is also enhanced. All these flow characteristics seem to level off with the increase of the slip coefficient. However, because of the inherent limitation of the Navier slip law, use of an overestimated slip coefficient would predict an over-sticky state between the screw surface and the polymer melt.
文摘In order to facilitate the teaching of industrial processes and experiments on the twin-screw extruder control debugging,and be closer to the actual testing,to reduce the debugging costs and the risk of debugging process,the paper designs a hardware-in-loop simulation of twin-screw extruder experiment system which is closer to scene,low cost and high safety.The system through the establishment of twin-screw extruder’s mathematical model on computer to simulate the realistic system and there is hardware practicality in the computer simulation loop.The hardware based on C8051F020 can operate in the simulation loop in real time.In computer software design, we desigh man-machine interface that is intuitive and easy to operate,can reflect twin-screw extruder main operation information vividly.Finally,twin-screw extruder’s 3 heater temperature mathematical model and PID incremental control algorithm are presented.
文摘The HA/UHMWPE nanocomposite is compounded by twin-screw extrusion of the HA and UHMWPE powder mixture in paraffin oil and then compression molded to a sheet form. TGA measurement shows the HA weight loss after processing is about 1%-2% . FTIR spectra indicate the paraaffin oil residue is trivial and UHMWPE is not oxidized. SEM reveals the HA nano particles are homogeneously dispersed by twin-screw extrusion and the inter-particle spaces are penetrated with UHMWPE fibrils by swelling treatment. HRTEM image indicates the HA particles and UHMWPE are intimately contacted by mechanical interlocking. Compared with the unfilled UHMWPE, stiffness of the composite with the HA volume fraction 0. 23 was significantly enhanced to 9 times without detriment of the yield strength and the ductility.
基金from The Hitachi Global Foundation Asia Innovation Award 2020.Also,the authors thank the facilities,scientific and technical support from Advanced Characterization Laboratories Serpong and Cibinong,National Research and Innovation Institute through E-Layanan Sains,Badan Riset dan Inovasi Nasional(BRIN).
文摘Sugar palm(Arenga pinnata)starch is considered an important renewable,biodegradable,and eco-friendly polymer,which is derived from agricultural by-products and residues,with great potential for the development of biocomposite materials.This research was aimed at investigating the development of TPS biocomposites from A.pinnata palm starch using an extrusion process.Palm starch,glycerol,and stearic acid were extruded in a twin-screw extruder.Scanning electron microscopy(SEM)analysis of TPS showed that the starch granules were damaged and gelatinized in the extrusion process.The density of TPS was 1.3695 g/mL,lower than that of palm starch,and the addition of stearic acid resulted in increased TPS density.X-ray diffraction(XRD)results showed that palm starch had a C-type pattern crystalline structure.The tensile strength,elongation at break,and modulus of elasticity of TPS were 7.19 MPa,33.95%,and 0.56 GPa,respectively.The addition of stearic acid reduced the tensile strength,elongation at break and modulus of elasticity of TPS.The rheological properties,i.e.,melt flow rate(MFR)and viscosity of TPS,were 7.13 g/10 min and 2482.19 Pa.s,respectively.The presence of stearic acid in TPS resulted in increased MFR and decreased viscosity values.The peak gelatinization temperature of A.pinnata palm starch was 70°C,while Tg of TPS was 65°C.The addition of stearic acid reduced the Tg of TPS.The thermogravimetric analysis(TGA)analysis showed that the addition of glycerol and stearic acid decreased the thermal stability,but extended the temperature range of thermal degradation.TPS derived from A.pinnata palm starch by extrusion method has the potential to be applied in industrial practice as a promising raw material for manufacturing bio-based packaging as a sustainable and green alternative to petroleum-based plastics.
基金National Natural Science Foundation of China(No.51345006)Specialized Research Fund for the Doctoral Program of Higher Education,China(No.20123719120004)
文摘One improved mixing-extruding machine was introduced as the second-generation product of the mixing-molding integrated technology. In the extruding system,the conventional single screw extruder was substituted by a special conical twin-screw extruder,resulting in stronger feeding ability,more stable extrusion pressure,and better quality of products. The integrated mathematical model of mixing-extruding process was also established by theoretical derivation and optimization according to the experimental results.Then its accuracy was verified by the influences of the pressure of floating weight and the cooling water temperature of extruder on the mixing-extruding integrated process. The results showed that the changes of both parameters could give rise to the fluctuation of the temperature and apparent viscosity of polyblends, thus further influencing the screw rotation speed.
文摘This paper presents a comparative analysis between single and twin-screw propulsion systems of a bulk carrier to evaluate the ship and propeller performance in terms of fuel consumption as well as to discuss the cavitation and noise criteria.An optimization model is developed to select the optimum propeller geometry and operational point along the engine load diagram for the selected engines of each case.The engines are selected from the same series due to the same behaviour along the engine load diagram.The propellers are selected from the B-series as fixed-pitch propellers.It has been concluded that while the components of the single-screw propulsion system are larger than the twin-screw,the single-screw propulsion system shows a reduction in fuel consumption than the twin screw by around 19%,thus affecting the amount of exhaust emissions from the ship.This model helps the ship designers to select a suitable propeller to improve the energy efficiency of the ships.