期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Interplay between temperature-dependent strengthening mechanisms and mechanical stability in high-performance austenitic stainless steels
1
作者 Mohammad Javad Sohrabi Hamed Mirzadeh +3 位作者 Saeed Sadeghpour Milad Zolfipour Aghdam Abdol Reza Geranmayeh Reza Mahmudi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2024年第10期2182-2188,共7页
The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compare... The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compared for the first time to tune the mechan-ical properties,strengthening mechanisms,and strength-ductility synergy.For this purpose,the scanning electron microscopy(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),tensile testing,work-hardening analysis,and thermodynamics calcu-lations were used.The induced plasticity effects led to a high temperature-dependency of work-hardening behavior in the 304L and 316L stainless steels.As the deformation temperature increased,the metastable 304L stainless steel showed the sequence of TRIP,TWIP,and weakening of the induced plasticity mechanism;while the disappearance of the TWIP effect in the 316L stainless steel was also observed.However,the solid-solution strengthening in the 904L superaustenitic stainless steel maintained the tensile properties over a wide temper-ature range,surpassing the performance of 304L and 316L stainless steels.In this regard,the dependency of the total elongation on the de-formation temperature was less pronounced for the 904L alloy due to the absence of additional plasticity mechanisms.These results re-vealed the importance of solid-solution strengthening and the associated high friction stress for superior mechanical behavior over a wide temperature range. 展开更多
关键词 austenitic stainless steels mechanical behavior stacking fault energy metastability mechanical twinning
下载PDF
晶体生长的缺陷机制
2
作者 闵乃本 《人工晶体学报》 EI CAS CSCD 北大核心 2000年第S1期4-,共1页
Crystal growth is a complicated phase transition process.A perfect mechanism for practical crystal growth process has not been proposed and well recognized up till now.A model,i.e.screw dislocation model presented by ... Crystal growth is a complicated phase transition process.A perfect mechanism for practical crystal growth process has not been proposed and well recognized up till now.A model,i.e.screw dislocation model presented by F.C.Frank for imperfect crystal growth was adopted during early 1950’s.No systemic research on defects other than screw dislocation has been conducted during a quite long time. Since 1980’s,we have engaged systematically in the investigation of the defect mechanism of crystal growth,and our conclusion is that any defect providing step sources in the growing surface can make contribution to continuous crystal growth.These steps contain both complete(whole)steps and sub steps(incomplete steps). 展开更多
关键词 screw dislocation model step source stacking fault mechanism twin mechanism sub step mechanism
下载PDF
Effects of annealing temperature on the microstructure and properties of the 25Mn-3Si-3Al TWIP steel 被引量:14
3
作者 Zhen-li Mi Di Tang Hai-tao Jiang Yong-juan Dai Shen-sheng Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第2期154-158,共5页
Microstructures and mechanical properties of the 25Mn twinning induced plasticity (TWIP) steel at different annealing temperatures were investigated. The results indicated that when the annealing temperature was 100... Microstructures and mechanical properties of the 25Mn twinning induced plasticity (TWIP) steel at different annealing temperatures were investigated. The results indicated that when the annealing temperature was 1000℃, the 25Mn steel showed excellent comprehensive mechanical properties, the tensile strength was about 640 MPa, the yield strength was higher than 255 MPa, and the elongation was above 82%. The microstructure was analyzed by optical microscopy (OM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Before deformation the microstructure was composed of austenitic matrix and annealing twins at room temperature; at the same time, a significant amount of annealing twins and stacking faults were observed by TEM. Mechanical twins played a dominant role in deformation and as a result the mechanical properties were found to be excellent. 展开更多
关键词 annealing temperature TWIP steel annealing twins mechanical twins
下载PDF
Microstructure and mechanical properties of cryorolled AZ31 magnesium alloy sheets with different initial textures 被引量:2
4
作者 Jin-ru Luo Ya-qiong Yan +1 位作者 Ji-shan Zhang Lin-zhong Zhuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第7期827-834,共8页
AZ31 magnesium alloy sheets with different strong textures were cryorolled at the liquid-nitrogen temperature to the strain of 4% and 8%. The microstructure and texture of the rolled sheets were investigated via scann... AZ31 magnesium alloy sheets with different strong textures were cryorolled at the liquid-nitrogen temperature to the strain of 4% and 8%. The microstructure and texture of the rolled sheets were investigated via scanning electron microscopy(SEM), electron backscatter diffraction(EBSD), and X-ray diffraction(XRD). The mechanical properties of the sheets were tested through in-plane uniaxial tensile tests at ambient temperature. The tensile stress was exerted in the rolling direction(RD) and transverse directions(TD). The microstructural and textural evolutions of the alloy during cryorolling were investigated. Due to active twining during rolling, the initial texture significantly influenced the microstructural and textural evolutions of the rolled sheets. A {10 12} extension twin was found as the dominated twin-type in the cryorolled samples. After cryogenic rolling, the ductility of the samples decreased while the strength increased. Twinning also played an important role in explaining the mechanical differences between the rolled samples with different initial textures. The samples were significantly strengthened by the high stored energy accumulated from cryorolling. 展开更多
关键词 magnesium alloy cryorolling microstructure mechanical properties twinning
下载PDF
Mechanical Properties and Microstructure Evolution of Cold-deformed High-nitrogen Nickel-free Austenitic Stainless Steel during Annealing
5
作者 徐明舟 刘春明 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期830-835,共6页
The mechanical properties and microstructure evolution of cold-deformed CrMnN austenitic stainless steel annealed in a temperature ranging from 50 ℃ to 650 ℃ for 90 min and at 550 ℃ for different time were investig... The mechanical properties and microstructure evolution of cold-deformed CrMnN austenitic stainless steel annealed in a temperature ranging from 50 ℃ to 650 ℃ for 90 min and at 550 ℃ for different time were investigated by tensile test, micro hardness test, and Transmission Electron Microscope (TEM). The steel was strengthened when it got annealed at temperatures ranging from 100 ℃ to 550 ℃, while it was softened when it got annealed at temperatures ranging from 550 ℃ to 650 ℃. Annealing temperature had stronger effect on mechanical properties than annealing time. TEM observations showed that nano-sized precipitates formed when the steel was annealed at 150 ℃ for 90 min, but the size and density of precipitates had no noticeable change with annealing temperature and time. Recrystallization occurred when the steel was annealed at temperatures above 550 ℃ for 90 min, and its scale increased with annealing temperature. Nano-sized annealing twins were observed. The mechanisms that controlled the mechanical behaviors of the steel were discussed. 展开更多
关键词 annealing mechanical property microstructure twinning high nitrogen austenitic stainless steel
下载PDF
Dislocation glide and mechanical twinning in a ductile VNbTi medium entropy alloy 被引量:2
6
作者 Mingxu Wu Shubin Wang +4 位作者 Fei Xiao Guoliang Zhu Chao Yang Da Shu Baode Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第15期210-215,共6页
An equiatomic VNbTi medium-entropy alloy with outstanding tensile properties and unique deformation behavior is reported.The screw dislocation glide,deformation twinning,and dislocation accumulation induced kink bands... An equiatomic VNbTi medium-entropy alloy with outstanding tensile properties and unique deformation behavior is reported.The screw dislocation glide,deformation twinning,and dislocation accumulation induced kink bands are identified as three deformation mechanisms that contribute to a large elongation above 20%.The{112}<111>twins are activated at the beginning of the yield stage accompanied by sudden stress-drop and pronounced acoustic emission.Dislocations dominate subsequent tensile deformation,and the prevalent multiplanar dislocation slip promotes the formation of complex dislocation configurations(e.g.,debris,dipoles,and loops)and dense dislocation networks.The twin bands and kink bands can further impede the dislocation motion meanwhile effectively alleviate stress concentration.The synergistic activation of these deformation mechanisms provides new opportunities to design ductile refractory medium-and high-entropy alloys. 展开更多
关键词 Medium-entropy alloy Mechanical twinning Screw dislocation Multiplanar slip Tensile deformation
原文传递
Strain Hardening Associated with Dislocation,Deformation Twinning,and Dynamic Strain Aging in Fe–20Mn–1.3C–(3Cu) TWIP Steels 被引量:2
7
作者 Lingyan Zhao Dingyi Zhu +2 位作者 Longlong Liu Zhenming Hu Mingjie Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第4期601-608,共8页
The effects of Cu on stacking fault energy,dislocation slip,mechanical twinning,and strain hardening in Fe–20Mn–1.3C twinning-induced plasticity(TWIP) steels were systematically investigated.The stacking fault ene... The effects of Cu on stacking fault energy,dislocation slip,mechanical twinning,and strain hardening in Fe–20Mn–1.3C twinning-induced plasticity(TWIP) steels were systematically investigated.The stacking fault energy was raised with an average slope of 2 mJ/m2 per 1 wt% Cu.The Fe–20Mn–1.3C–3Cu steel exhibited superior tensile properties,with the ultimate tensile strength reached at 2.27 GPa and elongation up to 96.9% owing to the high strain hardening that occurred.To examine the mechanism of this high strain hardening,dislocation density determination by XRD was calculated.The dislocation density increased with the increasing strain,and the addition of Cu resulted in a decrease in the dislocation density.A comparison of the strain-hardening behavior of Fe–20Mn–1.3C and Fe–20Mn–1.3C–3Cu TWIP steels was made in terms of modified Crussard–Jaoul(C–J) analysis and microstructural observations.Especially at low strains,the contributions of all the relevant deformation mechanisms—slip,twinning,and dynamic strain aging—were quantitatively evaluated.The analysis revealed that the dislocation storage was the leading factor to the increase of the strain hardening,while dynamic strain aging was a minor contributor to strain hardening.Twinning,which interacted with the matrix,acted as an effective barrier to dislocation motion. 展开更多
关键词 twinning-induced plasticity(TWIP) Strain hardening Mechanical twinning Dislocation density Dynamic strain aging
原文传递
Effect of Twin Boundary–Dislocation–Solute Interaction on Detwinning in a Mg–3Al–1Zn Alloy 被引量:1
8
作者 Jing Xu Bo Guan +3 位作者 Huihui Yu Xuezhen Cao Yunchang Xin Qing Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第12期1239-1244,共6页
In the present study,the influence of solute atoms together with dislocations at {101^-2} twin boundary(TB) on mechanical behavior of a detwinning predominant deformation in a Mg alloy AZ31 plate was systematically ... In the present study,the influence of solute atoms together with dislocations at {101^-2} twin boundary(TB) on mechanical behavior of a detwinning predominant deformation in a Mg alloy AZ31 plate was systematically studied.The results show that a large number of {101^-2} twins disappear during recompression along the normal direction.Both the TB-dislocation interaction and TB-solute-dislocation interaction can greatly enhance the yield stress of the recompression along the normal direction(ND).However,the solute segregation at {1012} TBs with an intensive interaction with 〈a〉 dislocations cannot further enhance the yield stress of ND recompression.The samples with TB-dislocation interaction show a similar working hardening performance with that subjected to a TB-solute-dislocation interaction.Both the TB-dislocation interaction and TB-solute-dislocation interaction greatly reduce the value of work hardening peaks during a detwinning predominant deformation. 展开更多
关键词 Magnesium alloy Mechanical behavior twinning Dislocation
原文传递
Tensile deformation behavior of nickel-free high-manganese austenitic cryogenic-temperature steel 被引量:1
9
作者 Xin-tian Wang Hui-bin Wu +3 位作者 Yang Gu Li-xiong Xu Peng-cheng Zhang Qi-bo Tang 《Journal of Iron and Steel Research(International)》 SCIE EI CSCD 2022年第5期793-801,共9页
Nickel-free high-manganese austenitic Fe–24.4Mn–4.04Al–0.057C steel was produced by smelting,and the homogenized forged billet was hot-rolled.The plastic deformation mechanism was investigated through tensile testi... Nickel-free high-manganese austenitic Fe–24.4Mn–4.04Al–0.057C steel was produced by smelting,and the homogenized forged billet was hot-rolled.The plastic deformation mechanism was investigated through tensile testing of the hot-rolled sample.Different characterization techniques such as scanning electron microscopy,transmission electron microscopy,electron backscattered diffraction,and X-ray diffraction were used to analyze the microstructural evolution of steel under different strain levels.The steel had a single austenite phase,which was stable during deformation.After hot rolling,annealing twins were observed in the microstructure of the steel.The steel showed an excellent combination of mechanical properties,like a tensile strength of 527 MPa,impact energy of 203 J at−196℃,and an elongation of 67%till fracture.At the initial deformation stage,the dislocations were generated within the austenite grains,entangled and accumulated at the grain boundaries and annealing twin boundaries.Annealing twins participated in plastic deformation and hindered the dislocation movement.As the deformation progressed,the dislocation slip was hindered and produced stress concentration,and the stacking faults evolved into mechanical twins,which released the stress concentration and delayed the necking. 展开更多
关键词 High-manganese steel Austenite grain Tensile deformation Mechanical twin Annealing twin
原文传递
The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy
10
作者 Xiaolin Li Xiaoxiao Hao +4 位作者 Chi Jin Qi Wang Xiangtao Deng Haifeng Wang Zhaodong Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第15期167-177,共11页
The mechanical properties and deformation mechanism of a C-doped interstitial high-entropy alloy(i HEA)with a nominal composition of Fe_(49.5)Mn_(29.7)Co_(9.9)Cr_(9.9)C_(1)(at.%)were investigated.An excellent combinat... The mechanical properties and deformation mechanism of a C-doped interstitial high-entropy alloy(i HEA)with a nominal composition of Fe_(49.5)Mn_(29.7)Co_(9.9)Cr_(9.9)C_(1)(at.%)were investigated.An excellent combination of strength and ductility was obtained by cold rolling and annealing.The structure of the alloy is consisted of FCC matrix and randomly distributed Cr_(23)C_(6).For gaining a better understanding of deformation mechanism,EBSD and TEM were conducted to characterize the microstructure of tensile specimens interrupted at different strains.At low strain(2%),deformation is dominated by dislocations and their partial slip.With the strain increase to 20%,deformation-driven athermal phase transformation and dislocations slip are the main deformation mechanism.While at high strain of 35%before necking,deformation twins have been observed besides the HCP phase.The simultaneous effect of phase transformation(TRIP effect)and mechanical twins(TWIP effect)delay the shrinkage,and improve the tensile strength and plasticity.What's more,compared with the HEA without C addition,the yield strength of the C-doped i HEA has been improved,which can be attributed to the grain refinement strengthening and precipitation hardening.Together with the lattice friction and solid solution strengthening,the theoretical calculated values of yield strength match well with the experimental results. 展开更多
关键词 Interstitial high-entropy alloy Precipitation strengthening Mechanical properties Phase transformation Mechanical twins
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部