A theoretical method for static analysis of naturally curved and twisted beams under complicated loads was presented, with special attention devoted to the solving process of governing equations which take into accoun...A theoretical method for static analysis of naturally curved and twisted beams under complicated loads was presented, with special attention devoted to the solving process of governing equations which take into account the effects of torsion-related warping as well as transverse shear deformations. These governing equations, in special cases, can be readily solved and yield the solutions to the problem. The solutions can be used for the analysis of the beams, including the calculation of various internal forces, stresses, strains and displacements. The present theory will be used to investigate the stresses and displacements of a plane curved beam subjected to the action of horizontal and vertical distributed loads. The numerical results obtained by the present theory are found to be in very good agreement with the results of the FEM results. Besides, the present theory is not limited to the beams with a double symmetric cross-section, it can also be extended to those with arbitrary cross-sectional shape.展开更多
Twisting chirality is widely observed in artificial and natural materials and structures at different length scales. In this paper, we theoretically investigate the effect of twisting chiral morphology on the mechanic...Twisting chirality is widely observed in artificial and natural materials and structures at different length scales. In this paper, we theoretically investigate the effect of twisting chiral morphology on the mechanical properties of elas- tic beams by using the Timoshenko beam model. Particular attention is paid to the transverse bending and axial buckling of a pre-twisted rectangular beam. The analytical solution is first derived for the deflection of a clamped-free beam under a uniformly or periodically distributed transverse force. The critical buckling condition of the beam subjected to its self- weight and an axial compressive force is further solved. The results show that the twisting morphology can significantly improve the resistance of beams to both transverse bending and axial buckling. This study helps understand some phenomena associated with twisting chirality in nature and provides inspirations for the design of novel devices and structures.展开更多
In this research, vibration and wave propagation analysis of a twisted micro- beam on Pasternak foundation is investigated. The strain-displacement relations (kine-matic equations) are calculated by the displacement...In this research, vibration and wave propagation analysis of a twisted micro- beam on Pasternak foundation is investigated. The strain-displacement relations (kine-matic equations) are calculated by the displacement fields of the twisted micro-beam. The strain gradient theory (SGT) is used to implement the size dependent effect at micro-scale. Finally, using an energy method and Hamilton's principle, the governing equations of motion for the twisted micro-beam are derived. Natural frequencies and the wave prop- agation speed of the twisted micro-beam are calculated with an analytical method. Also, the natural frequency, the phase speed, the cut-off frequency, and the wave number of the twisted micro-beam are obtained by considering three material length scale parameters, the rate of twist angle, the thickness, the length of twisted micro-beam, and the elastic medium. The results of this work indicate that the phase speed in a twisted micro-beam increases with an increase in the rate of twist angle. Moreover, the wave number is in- versely related with the thickness of micro-beam. Meanwhile, it is directly related to the wave propagation frequency. Increasing the rate of twist angle causes the increase in the natural frequency especially with higher thickness. The effect of the twist angle rate on the group velocity is observed at a lower wave propagation frequency.展开更多
The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated compo...The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated composite box beams is presented by taking into account all the structural couplings coming from the material anisotropy and the shear deformation effects. The current composite beam includes the transverse shear and the restrained warping induced shear deformation by using the first-order shear deformation beam theory. Seven governing equations are derived for the coupled axial-flexural-torsional-shearing buckling based on the principle of minimum total potential energy. Based on the present analytical model, three different types of finite composite beam elements, namely, linear, quadratic and cubic elements are developed to analyze the flexural, torsional, and buckling problems. In order to demonstrate the accuracy and superiority of the beam theory and the finite beam elements developed by this study,numerical solutions are presented and compared with the results obtained by other researchers and the detailed threedimensional analysis results using the shell elements of ABAQUS. Especially, the influences of the modulus ratio and the simplified assumptions in stress-strain relations on the deflection, twisting angle, and critical buckling loads of composite box beams are investigated.展开更多
文摘A theoretical method for static analysis of naturally curved and twisted beams under complicated loads was presented, with special attention devoted to the solving process of governing equations which take into account the effects of torsion-related warping as well as transverse shear deformations. These governing equations, in special cases, can be readily solved and yield the solutions to the problem. The solutions can be used for the analysis of the beams, including the calculation of various internal forces, stresses, strains and displacements. The present theory will be used to investigate the stresses and displacements of a plane curved beam subjected to the action of horizontal and vertical distributed loads. The numerical results obtained by the present theory are found to be in very good agreement with the results of the FEM results. Besides, the present theory is not limited to the beams with a double symmetric cross-section, it can also be extended to those with arbitrary cross-sectional shape.
基金supported by the National Natural Science Foundation of China(31270989 and 11372162)the 973 Program of MOST(2010CB631005 and 2012CB934001)Tsinghua University(20121087991)
文摘Twisting chirality is widely observed in artificial and natural materials and structures at different length scales. In this paper, we theoretically investigate the effect of twisting chiral morphology on the mechanical properties of elas- tic beams by using the Timoshenko beam model. Particular attention is paid to the transverse bending and axial buckling of a pre-twisted rectangular beam. The analytical solution is first derived for the deflection of a clamped-free beam under a uniformly or periodically distributed transverse force. The critical buckling condition of the beam subjected to its self- weight and an axial compressive force is further solved. The results show that the twisting morphology can significantly improve the resistance of beams to both transverse bending and axial buckling. This study helps understand some phenomena associated with twisting chirality in nature and provides inspirations for the design of novel devices and structures.
基金Project supported by the Iranian Nanotechnology Development Committee and the University of Kashan(No.463855/11)
文摘In this research, vibration and wave propagation analysis of a twisted micro- beam on Pasternak foundation is investigated. The strain-displacement relations (kine-matic equations) are calculated by the displacement fields of the twisted micro-beam. The strain gradient theory (SGT) is used to implement the size dependent effect at micro-scale. Finally, using an energy method and Hamilton's principle, the governing equations of motion for the twisted micro-beam are derived. Natural frequencies and the wave prop- agation speed of the twisted micro-beam are calculated with an analytical method. Also, the natural frequency, the phase speed, the cut-off frequency, and the wave number of the twisted micro-beam are obtained by considering three material length scale parameters, the rate of twist angle, the thickness, the length of twisted micro-beam, and the elastic medium. The results of this work indicate that the phase speed in a twisted micro-beam increases with an increase in the rate of twist angle. Moreover, the wave number is in- versely related with the thickness of micro-beam. Meanwhile, it is directly related to the wave propagation frequency. Increasing the rate of twist angle causes the increase in the natural frequency especially with higher thickness. The effect of the twist angle rate on the group velocity is observed at a lower wave propagation frequency.
基金part of a research project supported by Korea Ministry of LandTransportation Maritime Affairs (MLTM) through Core Research Project 1 of Super Long Span Bridge R&D Centersupported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology (2012R1A1A2007054)
文摘The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated composite box beams is presented by taking into account all the structural couplings coming from the material anisotropy and the shear deformation effects. The current composite beam includes the transverse shear and the restrained warping induced shear deformation by using the first-order shear deformation beam theory. Seven governing equations are derived for the coupled axial-flexural-torsional-shearing buckling based on the principle of minimum total potential energy. Based on the present analytical model, three different types of finite composite beam elements, namely, linear, quadratic and cubic elements are developed to analyze the flexural, torsional, and buckling problems. In order to demonstrate the accuracy and superiority of the beam theory and the finite beam elements developed by this study,numerical solutions are presented and compared with the results obtained by other researchers and the detailed threedimensional analysis results using the shell elements of ABAQUS. Especially, the influences of the modulus ratio and the simplified assumptions in stress-strain relations on the deflection, twisting angle, and critical buckling loads of composite box beams are investigated.