The objective of this work was to investigate nucleate pool boiling heat transfer performance and mechanism of R134a and R142b on a twisted tube with machine processed porous surface (T-MPPS tube) as well as to dete...The objective of this work was to investigate nucleate pool boiling heat transfer performance and mechanism of R134a and R142b on a twisted tube with machine processed porous surface (T-MPPS tube) as well as to determine its potential application to flooded refrigerant evaporators. In the experimental range, the boiling heat transfer coefficients of R134a on a T-MPPS tube were 1.8-2.0 times larger than those of R134a on a plain tube. In addition, the developed experimental correlations verified that the predictions of the heat transfer coefficients of boiling R134a and R142bon a T-MPPS tube at the experimental conditions were considerably accurate.展开更多
To overcome the defect of the significant increase in pressure drop when the heat transfer performance of helical baffle heat exchanger is improved,a novel helical baffle heat exchanger with twisted oval tube is propo...To overcome the defect of the significant increase in pressure drop when the heat transfer performance of helical baffle heat exchanger is improved,a novel helical baffle heat exchanger with twisted oval tube is proposed.Numerical simulation was done to exhibit the shell side heat transfer and flow characteristics with CFD software Fluent.The field synergy principle was used to evaluate the shell side performance.The results show that the flow velocity distribution on the shell side of the spiral baffle heat exchanger is more uniform and the velocity near the tube wall increases in the range of research parameters,as the circular tube is replaced by a twisted elliptical tube with the same perimeter length.Moreover,the helical baffle heat exchanger with twisted oval tube has better field synergy of velocity and temperature gradient,velocity and pressure gradient.The helical baffle heat exchanger with helix angle of 15°has better performance than that of circular tube,and its heat transfer coefficient is improved about 3.3%and pressure drop is reduced by 17.1%–19.1%.Hence,the comprehensive heat transfer performance is improved by 21.5%–22.5%.When the helix angle is 20°,the comprehensive heat transfer performance is increased by 16.1%–18.0%with heat transfer coefficient improvement of 3.6%and pressure drop reduction of 13.9%–16.5%.展开更多
Based on experimental data,numerical simulations by turbulent air flowing across staggered tube bundle composed of twisted elliptical tube(TET)with constant tube wall temperature are conducted in present study.Paramet...Based on experimental data,numerical simulations by turbulent air flowing across staggered tube bundle composed of twisted elliptical tube(TET)with constant tube wall temperature are conducted in present study.Parametric study on the thermal-hydraulic characteristics of air crossflow in TET bundles is investigated with physical parameters and Reynolds number(Re).The results show that spiral channels created by spiral deformation of TETs have a diversion effect on the air flow,which changes the flow direction of the air near the tube wall.The air in the near wall region is a three-dimensional flow,consisting of a flow perpendicular to the normal direction of the elliptical cross section and a spiral flow along the helicoid on the downstream side and the upstream side.And the interaction of the spiral channels makes the two flows and their mixing more complicated.The excellent heat transfer performance of staggered TET bundles is confirmed by the comparison of the comprehensive heat transfer performance with that of circular tube bundles.The average Nusselt number(Nu)increases with the increase of the aspect ratio(A/B)and with the increase of Re while decreases as the twist pitch(S)increases.The average Euler number(Eu)increases as A/B increases,while it decreases as Re increases and as S increases.Due to the fact that the suitable correlations for staggered TET bundles are not reported,correlations for Nu and Eu obtained from experimental data and numerical results are presented in the multiple forms.展开更多
基金the Guangdong Provincial Scientific and Technological Development Program (2004B10201008)
文摘The objective of this work was to investigate nucleate pool boiling heat transfer performance and mechanism of R134a and R142b on a twisted tube with machine processed porous surface (T-MPPS tube) as well as to determine its potential application to flooded refrigerant evaporators. In the experimental range, the boiling heat transfer coefficients of R134a on a T-MPPS tube were 1.8-2.0 times larger than those of R134a on a plain tube. In addition, the developed experimental correlations verified that the predictions of the heat transfer coefficients of boiling R134a and R142bon a T-MPPS tube at the experimental conditions were considerably accurate.
基金supported by National Natural Science Foundation of China(Grants No.21776263,51706208)。
文摘To overcome the defect of the significant increase in pressure drop when the heat transfer performance of helical baffle heat exchanger is improved,a novel helical baffle heat exchanger with twisted oval tube is proposed.Numerical simulation was done to exhibit the shell side heat transfer and flow characteristics with CFD software Fluent.The field synergy principle was used to evaluate the shell side performance.The results show that the flow velocity distribution on the shell side of the spiral baffle heat exchanger is more uniform and the velocity near the tube wall increases in the range of research parameters,as the circular tube is replaced by a twisted elliptical tube with the same perimeter length.Moreover,the helical baffle heat exchanger with twisted oval tube has better field synergy of velocity and temperature gradient,velocity and pressure gradient.The helical baffle heat exchanger with helix angle of 15°has better performance than that of circular tube,and its heat transfer coefficient is improved about 3.3%and pressure drop is reduced by 17.1%–19.1%.Hence,the comprehensive heat transfer performance is improved by 21.5%–22.5%.When the helix angle is 20°,the comprehensive heat transfer performance is increased by 16.1%–18.0%with heat transfer coefficient improvement of 3.6%and pressure drop reduction of 13.9%–16.5%.
基金supported by National Natural Science Foundation of China(No.51806060,No.51876055,and No.51706061)CAS Key Laboratory of Renewable Energy(No.E029kf0401)Doctoral Research Startup Fund of Henan University of Science and Technology.
文摘Based on experimental data,numerical simulations by turbulent air flowing across staggered tube bundle composed of twisted elliptical tube(TET)with constant tube wall temperature are conducted in present study.Parametric study on the thermal-hydraulic characteristics of air crossflow in TET bundles is investigated with physical parameters and Reynolds number(Re).The results show that spiral channels created by spiral deformation of TETs have a diversion effect on the air flow,which changes the flow direction of the air near the tube wall.The air in the near wall region is a three-dimensional flow,consisting of a flow perpendicular to the normal direction of the elliptical cross section and a spiral flow along the helicoid on the downstream side and the upstream side.And the interaction of the spiral channels makes the two flows and their mixing more complicated.The excellent heat transfer performance of staggered TET bundles is confirmed by the comparison of the comprehensive heat transfer performance with that of circular tube bundles.The average Nusselt number(Nu)increases with the increase of the aspect ratio(A/B)and with the increase of Re while decreases as the twist pitch(S)increases.The average Euler number(Eu)increases as A/B increases,while it decreases as Re increases and as S increases.Due to the fact that the suitable correlations for staggered TET bundles are not reported,correlations for Nu and Eu obtained from experimental data and numerical results are presented in the multiple forms.