Twist structures have diverse applications, ranging from dragline, electrical cable, and intelligent structure. Among these applications, tension deformation can't be avoided during the fabrication and working proces...Twist structures have diverse applications, ranging from dragline, electrical cable, and intelligent structure. Among these applications, tension deformation can't be avoided during the fabrication and working processes, which often leads to the twist structure rotation (called untwisting effect) and twist pitch increasing. As a consequence, this untwisting behavior has a large effect on the effective Young's modulus. In this paper, we present an improved model based on the classical Costello's theory to predict the effective Young's modulus of the basic structure, twisted by three same copper strands under cyclic loading. Series of experiments were carried out to verify the present model taking into account the untwisting effect. The experimental results have better agreements with the presented model than the common Costello's model.展开更多
The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmenta...The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm.展开更多
The development of biochar has triggered a hot-spot in various research fields including agriculture,energy,environment,and materials.Biochar-based materials provide a novel approach against environmental challenging ...The development of biochar has triggered a hot-spot in various research fields including agriculture,energy,environment,and materials.Biochar-based materials provide a novel approach against environmental challenging issues.Considering the rapid development of biochar materials,this review serves as a valuable platform to summarize the recent progress on the theoretical investigation and engineering applications of biochar materials in environmental remediation.For a better understanding of the structure-application relationships,the structural properties of biochar from macroscopic and microscopic aspects are summarized.The multilevel structures including elements,phases,surface chemistry,and molecular are highlighted to elucidate the multi-functional properties of biochars.Sorption,catalysis,redox reaction,and biological activity of biochar are briefly illustrated,which influence the transport,transformation,and removal of organic and inorganic pollutants in the environments.According to the multi-level structures and structure-application relationships of biochar,specific biochar-based materials and devices have been designed for practical environmental application.The important progress on the functionalization and device of biochar-based materials,including magnetic biochars,2D and 3D biochar-based macrostructures,immobilized microorganism on biochar,and biochar-amended biofilters are highlighted.The environmental friendliness and sustainability of biochar-based materials,considering the whole cycle from synthesis to application,are evaluated.展开更多
Artificially constructed van der Waals heterostructures(vdWHs)provide an ideal platform for realizing emerging quantum phenomena in condensed matter physics.Two methods for building vdWHs have been developed:stacking ...Artificially constructed van der Waals heterostructures(vdWHs)provide an ideal platform for realizing emerging quantum phenomena in condensed matter physics.Two methods for building vdWHs have been developed:stacking two-dimensional(2D)materials into a bilayer structure with different lattice constants,or with different orientations.The interlayer coupling stemming from commensurate or incommensurate superlattice pattern plays an important role in vdWHs for modulating the band structures and generating new electronic states.In this article,we review a series of novel quantum states discovered in two model vdWH systems—graphene/hexagonal boron nitride(hBN)hetero-bilayer and twisted bilayer graphene(tBLG),and discuss how the electronic structures are modified by such stacking and twisting.We also provide perspectives for future studies on hetero-bilayer materials,from which an expansion of 2D material phase library is expected.展开更多
Twisted bilayer graphene(TBG) has been extensively studied because of its novel physical properties and potential application in electronic devices.Here we report the synthesis and characterization of 300 TBG naturall...Twisted bilayer graphene(TBG) has been extensively studied because of its novel physical properties and potential application in electronic devices.Here we report the synthesis and characterization of 300 TBG naturally grown on Cu_(0.75)Ni_(0.25)(111) film and investigate the electronic structure by angle-resolved photoemission spectroscopy.Compared with other substrates,our TBG with a wafer scale is acquired with a shorter growth time.The Fermi velocity and energy gap of Dirac cones of TBG are comparable with those of a monolayer on Cu_(0.85)Ni_(0.15)(111).The signature of moré lattices has not been observed in either the low-energy electron diffraction patterns or the Fermi surface map within experimental resolution,possibly due to different Cu and Ni contents in the substrates enhancing the different couplings between the substrate and the first/second layers and hindering the formation of a quasiperiodic structure.展开更多
Under saturation dosage of all kinds of SP, the free water amount was examined by centrifuge. The distribution of solution and flocculation microstructures in fresh cement paste was observed in three- dimensional spac...Under saturation dosage of all kinds of SP, the free water amount was examined by centrifuge. The distribution of solution and flocculation microstructures in fresh cement paste was observed in three- dimensional space by confocal laser scanning microscope(CLSM). Results indicate that SP can increase the free water amount by destroying the flocculated cement particle structure and different free water amount is released by different kinds of SP. The changes of the size of flocculation structures and the dispersion of solution were obviously detected with confocal laser scanning microscope: the size of flocculation structures was smaller and more dispersed in fresh cement paste with polycarboxylate superplasticizer, but the size of flocculation structures was bigger and cannot be dispersed uniformly in fresh cement paste with others SP. The multi- level flocculation structures theoretical model of fresh cement paste was then set up. The theory indicates that different kinds of SP with different dispersion strength will open the flocculation structures at different levels, which in turn present different water reducing rate.展开更多
As the era of nanoelectronics is dawning,CNT(carbon nanotube),a one-dimensional nano material with outstanding properties and performances,has aroused wide attention.In order to study its optical and electrical prop...As the era of nanoelectronics is dawning,CNT(carbon nanotube),a one-dimensional nano material with outstanding properties and performances,has aroused wide attention.In order to study its optical and electrical properties,this paper has researched the influence of tension-twisting deformation,defects,and mixed type on the electronic structure and optical properties of the armchair carbon nanotube superlattices doped cyclic alternately with B and N by using the first-principle method.Our findings show that if tension-twisting deformation is conducted,then the geometric structure,bond length,binding energy,band gap and optical properties of B,N doped carbon nanotube superlattices with defects and mixed type will be influenced.As the degree of exerted tension-twisting deformation increases,B,N doped carbon nanotube superlattices become less stable,and B,N doped carbon nanotube superlattices with defects are more stable than that with exerted tension-twisting deformations.Proper tension-twisting deformation can adjust the energy gap of the system;defects can only reduce the energy gap,enhancing the system metallicity;while the mixed type of 5%tension,twisting angle of 15° and atomic defects will significantly increase the energy gap of the system.From the perspective of optical properties,doped carbon nanotubes may transform the system from metallicity into semi-conductivity.展开更多
In industrial processes,there exist faults that have complex effect on process variables.Complex and simple faults are defined according to their effect dimensions.The conventional approaches based on structured resid...In industrial processes,there exist faults that have complex effect on process variables.Complex and simple faults are defined according to their effect dimensions.The conventional approaches based on structured residuals cannot isolate complex faults.This paper presents a multi-level strategy for complex fault isolation.An extraction procedure is employed to reduce the complex faults to simple ones and assign them to several levels.On each level,faults are isolated by their different responses in the structured residuals.Each residual is obtained insensitive to one fault but more sensitive to others.The faults on different levels are verified to have different residual responses and will not be confused.An entire incidence matrix containing residual response characteristics of all faults is obtained,based on which faults can be isolated.The proposed method is applied in the Tennessee Eastman process example,and the effectiveness and advantage are demonstrated.展开更多
Improving wound healing efficiency is a key issue for high performance dressings.The surface topology of fibers in wound dressings plays an important role in regulating cell behaviors during the regeneration.Herein,a ...Improving wound healing efficiency is a key issue for high performance dressings.The surface topology of fibers in wound dressings plays an important role in regulating cell behaviors during the regeneration.Herein,a polycaprolactone(PCL)scaffold with a shish-kebab structure was prepared by electrospinning and solution-induced crystallization.L929 cells were used to investigate the behavior of fibroblasts on the multi-level microfiber.The results showed that the shish-kebab fiber-based scaffold enhanced the cell proliferation when compared with the normal fiber and the fiber with a porous structure.Protein absorption,cell adhesive force,and cell modulus also increased by the shish-kebab fiber.The shish-kebab fiber-based scaffold with improved fibroblast-regulation ability can be applied in rapid wound healing.展开更多
Pure cotton low-twist single yarn has good softness,bulkiness,and wearing comfort,but its lower strength makes the yarn break easily during the spinning process,which seriously affects the spinning effect and progress...Pure cotton low-twist single yarn has good softness,bulkiness,and wearing comfort,but its lower strength makes the yarn break easily during the spinning process,which seriously affects the spinning effect and progress.The addition of long-staple cotton helps to increase the average length and uniformity of the raw fiber,thereby improving the breaking load and spinnability of pure cotton low-twist single yarn.In this study,the addition of long-staple cotton,the twist factor,and the twist direction were used as variables to spin 22 kinds of combed 14.6 tex pure cotton low-twist single yarn with spinnability,and the breaking load,the hairiness,and the unevenness of the yarn were tested.The result shows that the spinnability of pure cotton low-twist single yarn is mainly related to the breaking load,and with the increase of the twist factor,the breaking load of low-twist single yarn shows an obvious upward trend.When the proportion of long-staple cotton is 70%,the breaking load of low-twist single yarn is the largest,and the harmful hairiness index and unevenness of the yarn are significantly improved.展开更多
Based on forward modeling of detachment fold, this study presents a method to analyze multi-level detachment structures and identify the authenticity of deep-seated anticlines using time-domain seismic section. The st...Based on forward modeling of detachment fold, this study presents a method to analyze multi-level detachment structures and identify the authenticity of deep-seated anticlines using time-domain seismic section. The steps include the conversion of the time-migrated seismic image into depth domain image using a constant velocity field, structural interpretation of the depth seismic image, measurement of each structural relief area and each height above reference level, plotting of area-height relationship chart with piecewise fitting etc. The area-depth correlation can help the division of structural sequences, the definition of detachment levels, the calculation of the tectonic shortening, and the identification of deep-seated structure. The segment area-height relationship is a feature of multi-level detachment structures, while little or no linear correlation between area and height is an indicator of non-deformation or pseudo-anticline. Regardless of the uncertainty of area-height relationship, the segment slopes will correspond to the differential shortenings of multi-level detachments, the intersection between adjacent segments will give the height of detachment surface above reference level and then help define the detachment level in original time-domain seismic section. This method can make use of time-domain seismic data to determine the geologic structure of complicated structure areas and assess risks of deep exploration targets. It has achieved good results in southern Junggar and eastern Sichuan areas.展开更多
基金supported by the National Natural Science Foundation of China(11622217)the National Key Project of Scientific Instrument and Equipment Development(11327802)+1 种基金the National Program for Special Support of Top-Notch Young Professionalssupported by the Fundamental Research Funds for the Central Universities(lzujbky-2017-ot18,lzujbky-2017-k18)
文摘Twist structures have diverse applications, ranging from dragline, electrical cable, and intelligent structure. Among these applications, tension deformation can't be avoided during the fabrication and working processes, which often leads to the twist structure rotation (called untwisting effect) and twist pitch increasing. As a consequence, this untwisting behavior has a large effect on the effective Young's modulus. In this paper, we present an improved model based on the classical Costello's theory to predict the effective Young's modulus of the basic structure, twisted by three same copper strands under cyclic loading. Series of experiments were carried out to verify the present model taking into account the untwisting effect. The experimental results have better agreements with the presented model than the common Costello's model.
基金supported by the National Natural Science Foundation of China(Grant Nos.42077232 and 42077235)the Key Research and Development Plan of Jiangsu Province(Grant No.BE2022156).
文摘The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm.
基金This project was supported by the National Natural Science Foundations of China(21621005,and 21537005,21425730)the National Key Technology Research and Development Program of China(2018YFC1800705).
文摘The development of biochar has triggered a hot-spot in various research fields including agriculture,energy,environment,and materials.Biochar-based materials provide a novel approach against environmental challenging issues.Considering the rapid development of biochar materials,this review serves as a valuable platform to summarize the recent progress on the theoretical investigation and engineering applications of biochar materials in environmental remediation.For a better understanding of the structure-application relationships,the structural properties of biochar from macroscopic and microscopic aspects are summarized.The multilevel structures including elements,phases,surface chemistry,and molecular are highlighted to elucidate the multi-functional properties of biochars.Sorption,catalysis,redox reaction,and biological activity of biochar are briefly illustrated,which influence the transport,transformation,and removal of organic and inorganic pollutants in the environments.According to the multi-level structures and structure-application relationships of biochar,specific biochar-based materials and devices have been designed for practical environmental application.The important progress on the functionalization and device of biochar-based materials,including magnetic biochars,2D and 3D biochar-based macrostructures,immobilized microorganism on biochar,and biochar-amended biofilters are highlighted.The environmental friendliness and sustainability of biochar-based materials,considering the whole cycle from synthesis to application,are evaluated.
基金support from the National Natural Science Foundation of China(Grant No.11725418)the National Key Research and Development Program of China(Grant No.2016YFA0301004)+3 种基金Science Challenge Project,China(Grant No.TZ2016004)Beijing Advanced Innovation Center for Future Chip(ICFC)Tsinghua University Initiative Scientific Research Programfunded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)–TRR 173–268565370(projects A02)。
文摘Artificially constructed van der Waals heterostructures(vdWHs)provide an ideal platform for realizing emerging quantum phenomena in condensed matter physics.Two methods for building vdWHs have been developed:stacking two-dimensional(2D)materials into a bilayer structure with different lattice constants,or with different orientations.The interlayer coupling stemming from commensurate or incommensurate superlattice pattern plays an important role in vdWHs for modulating the band structures and generating new electronic states.In this article,we review a series of novel quantum states discovered in two model vdWH systems—graphene/hexagonal boron nitride(hBN)hetero-bilayer and twisted bilayer graphene(tBLG),and discuss how the electronic structures are modified by such stacking and twisting.We also provide perspectives for future studies on hetero-bilayer materials,from which an expansion of 2D material phase library is expected.
基金Project supported by the National Key R&D Program of China (Grant Nos. 2022YFB3608000 and 2022YFA1204900)the National Natural Science Foundation of China (Grant Nos. 12222413 and 12074205)+2 种基金the Natural Science Foundation of Shanghai (Grant Nos. 23ZR1482200 and 22ZR1473300)the Natural Science Foundation of Zhejiang Province (Grant No. LQ21A040004)the funding of Ningbo University (Grant No. LJ2024003)。
文摘Twisted bilayer graphene(TBG) has been extensively studied because of its novel physical properties and potential application in electronic devices.Here we report the synthesis and characterization of 300 TBG naturally grown on Cu_(0.75)Ni_(0.25)(111) film and investigate the electronic structure by angle-resolved photoemission spectroscopy.Compared with other substrates,our TBG with a wafer scale is acquired with a shorter growth time.The Fermi velocity and energy gap of Dirac cones of TBG are comparable with those of a monolayer on Cu_(0.85)Ni_(0.15)(111).The signature of moré lattices has not been observed in either the low-energy electron diffraction patterns or the Fermi surface map within experimental resolution,possibly due to different Cu and Ni contents in the substrates enhancing the different couplings between the substrate and the first/second layers and hindering the formation of a quasiperiodic structure.
基金Funded by the National Natural Science Foundation of China(No.50872151)the Outstanding Innovative Talents Program of China University of Mining&Technology(Beijing)(No.00-800015Z637)
文摘Under saturation dosage of all kinds of SP, the free water amount was examined by centrifuge. The distribution of solution and flocculation microstructures in fresh cement paste was observed in three- dimensional space by confocal laser scanning microscope(CLSM). Results indicate that SP can increase the free water amount by destroying the flocculated cement particle structure and different free water amount is released by different kinds of SP. The changes of the size of flocculation structures and the dispersion of solution were obviously detected with confocal laser scanning microscope: the size of flocculation structures was smaller and more dispersed in fresh cement paste with polycarboxylate superplasticizer, but the size of flocculation structures was bigger and cannot be dispersed uniformly in fresh cement paste with others SP. The multi- level flocculation structures theoretical model of fresh cement paste was then set up. The theory indicates that different kinds of SP with different dispersion strength will open the flocculation structures at different levels, which in turn present different water reducing rate.
基金supported by the National Natural Science Foundation of China(No.51371049)the Natural Science Foundation of Liaoning Province(No.20102173)
文摘As the era of nanoelectronics is dawning,CNT(carbon nanotube),a one-dimensional nano material with outstanding properties and performances,has aroused wide attention.In order to study its optical and electrical properties,this paper has researched the influence of tension-twisting deformation,defects,and mixed type on the electronic structure and optical properties of the armchair carbon nanotube superlattices doped cyclic alternately with B and N by using the first-principle method.Our findings show that if tension-twisting deformation is conducted,then the geometric structure,bond length,binding energy,band gap and optical properties of B,N doped carbon nanotube superlattices with defects and mixed type will be influenced.As the degree of exerted tension-twisting deformation increases,B,N doped carbon nanotube superlattices become less stable,and B,N doped carbon nanotube superlattices with defects are more stable than that with exerted tension-twisting deformations.Proper tension-twisting deformation can adjust the energy gap of the system;defects can only reduce the energy gap,enhancing the system metallicity;while the mixed type of 5%tension,twisting angle of 15° and atomic defects will significantly increase the energy gap of the system.From the perspective of optical properties,doped carbon nanotubes may transform the system from metallicity into semi-conductivity.
基金Supported by the National Natural Science Foundation of China(60574047)the National High Technology Research and Development Program of China(2007AA04Z168,2009AA04Z154)the Research Fund for the Doctoral Program of Higher Education in China(20050335018)
文摘In industrial processes,there exist faults that have complex effect on process variables.Complex and simple faults are defined according to their effect dimensions.The conventional approaches based on structured residuals cannot isolate complex faults.This paper presents a multi-level strategy for complex fault isolation.An extraction procedure is employed to reduce the complex faults to simple ones and assign them to several levels.On each level,faults are isolated by their different responses in the structured residuals.Each residual is obtained insensitive to one fault but more sensitive to others.The faults on different levels are verified to have different residual responses and will not be confused.An entire incidence matrix containing residual response characteristics of all faults is obtained,based on which faults can be isolated.The proposed method is applied in the Tennessee Eastman process example,and the effectiveness and advantage are demonstrated.
基金Fundamental Research Funds for the Central Universities,China(Nos.2232018G-01 and 2232020G-01)Initial Research Funds for Young Teachers of Donghua University,China。
文摘Improving wound healing efficiency is a key issue for high performance dressings.The surface topology of fibers in wound dressings plays an important role in regulating cell behaviors during the regeneration.Herein,a polycaprolactone(PCL)scaffold with a shish-kebab structure was prepared by electrospinning and solution-induced crystallization.L929 cells were used to investigate the behavior of fibroblasts on the multi-level microfiber.The results showed that the shish-kebab fiber-based scaffold enhanced the cell proliferation when compared with the normal fiber and the fiber with a porous structure.Protein absorption,cell adhesive force,and cell modulus also increased by the shish-kebab fiber.The shish-kebab fiber-based scaffold with improved fibroblast-regulation ability can be applied in rapid wound healing.
文摘Pure cotton low-twist single yarn has good softness,bulkiness,and wearing comfort,but its lower strength makes the yarn break easily during the spinning process,which seriously affects the spinning effect and progress.The addition of long-staple cotton helps to increase the average length and uniformity of the raw fiber,thereby improving the breaking load and spinnability of pure cotton low-twist single yarn.In this study,the addition of long-staple cotton,the twist factor,and the twist direction were used as variables to spin 22 kinds of combed 14.6 tex pure cotton low-twist single yarn with spinnability,and the breaking load,the hairiness,and the unevenness of the yarn were tested.The result shows that the spinnability of pure cotton low-twist single yarn is mainly related to the breaking load,and with the increase of the twist factor,the breaking load of low-twist single yarn shows an obvious upward trend.When the proportion of long-staple cotton is 70%,the breaking load of low-twist single yarn is the largest,and the harmful hairiness index and unevenness of the yarn are significantly improved.
基金Supported by the China National Science and Technology Major Project(2016ZX 05003-001)
文摘Based on forward modeling of detachment fold, this study presents a method to analyze multi-level detachment structures and identify the authenticity of deep-seated anticlines using time-domain seismic section. The steps include the conversion of the time-migrated seismic image into depth domain image using a constant velocity field, structural interpretation of the depth seismic image, measurement of each structural relief area and each height above reference level, plotting of area-height relationship chart with piecewise fitting etc. The area-depth correlation can help the division of structural sequences, the definition of detachment levels, the calculation of the tectonic shortening, and the identification of deep-seated structure. The segment area-height relationship is a feature of multi-level detachment structures, while little or no linear correlation between area and height is an indicator of non-deformation or pseudo-anticline. Regardless of the uncertainty of area-height relationship, the segment slopes will correspond to the differential shortenings of multi-level detachments, the intersection between adjacent segments will give the height of detachment surface above reference level and then help define the detachment level in original time-domain seismic section. This method can make use of time-domain seismic data to determine the geologic structure of complicated structure areas and assess risks of deep exploration targets. It has achieved good results in southern Junggar and eastern Sichuan areas.