Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on t...Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement.展开更多
A mathematical model of two-phase fluid nonlinear flow in the direction of normal of ellipse through low-permeability porous media was established according to a nonlinear flow law expressed in a continuous function w...A mathematical model of two-phase fluid nonlinear flow in the direction of normal of ellipse through low-permeability porous media was established according to a nonlinear flow law expressed in a continuous function with three parameters, a mass conservation law and a concept of turbulent ellipses. A solution to the model was obtained by using a finite difference method and an extrapolation method. Formulas of calculating development index not only before but also after water breaks through an oil well in the condition of two-phase fluid nonlinear flow in the media were derived. An example was discussed. Water saturation distribution was presented. The moving law of drainage front was found. Laws of change of pressure difference with time were recognized. Results show that there is much difference of water saturation distribution between nonlinear flow and linear flow; that drainage front by water moves faster, water breaks through sooner and the index gets worse because of the nonlinear flow; and that dimensionless pressure difference gets larger at the same dimensionless time and difficulty of oil development becomes bigger by the nonlinear flow. Thus, it is necessary that influence of nonlinear flow on development indexes of the oil fields be taken into account. The results provide water-flooding development of the oilfields with scientific basis.展开更多
Linearized equations of fluid dynamics of cell two phase flow for one dimensional case are proposed. Based on the equations, an analytic solution is derived, in which the frequency of wave is observed. The frequency f...Linearized equations of fluid dynamics of cell two phase flow for one dimensional case are proposed. Based on the equations, an analytic solution is derived, in which the frequency of wave is observed. The frequency formula consists of all important parameters of the fluid dynamics. In our observation, the group velocity and phase velocity of the motion of wave propagation are explicitly exhibited as well.展开更多
The USM-θ model of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collisi...The USM-θ model of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collision. In this model, phases interaction and the extra term of Bingham fluid yield stress are taken into account. An algorithm for USM-θ model in dense two-phase flow was proposed, in which the influence of particle volume fraction is accounted for. This model was used to simulate turbulent flow of Bingham fluid single-phase and dense liquid-particle two-phase in pipe. It is shown USM-θ model has better prediction result than the five-equation model, in which the particle-particle collision is modeled by the particle kinetic theory, while the turbulence of both phase is simulated by the two-equation turbulence model. The USM-θ model was then used to simulate the dense two-phase turbulent up flow of Bingham fluid with particles. With the increasing of the yield stress, the velocities of Bingham and particle decrease near the pipe centre. Comparing the two-phase flow of Bingham-particle with that of liquid-particle, it is found the source term of yield stress has significant effect on flow.展开更多
A method is proposed to predict the flowing bottomhole pressures (FBHPs) for two-phase coalbed methane (CBM) wells. The mathematical models for both gas column pressure and two-phase fluid column pressure were dev...A method is proposed to predict the flowing bottomhole pressures (FBHPs) for two-phase coalbed methane (CBM) wells. The mathematical models for both gas column pressure and two-phase fluid column pressure were developed based on the well liquid flow equation. FBHPs during the production were predicted by considering the effect of entrained liquid on gravitational gradients. Comparison of calculated BHPs by Cullender-Smith and proposed method was also studied. The results show that the proposed algorithm gives the desired accuracy of calculating BHPs in the low- productivity and low-pressure CBM wells. FBHP is resulted from the combined action of wellhead pressure, gas column pressure and fluid column pressure. Variation of kinetic energy term, compressibility and friction factors with depth increments and liquid holdup with velocity should be considered to simulate the real BHPs adequately. BHP is a function of depth of each column segment. The small errors of less than 1.5% between the calculated and measured values are obtained with each segment within 25 m. Adjusting BHPs can effectively increase production pressure drop, which is beneficial to CBM desorption and enhances reservoir productivity. The increment of pressure drop from 5.37 MPa2 to 8.66 MPa2 leads to an increase of CBM production from 3270 m3/d to 6700 m3/d and is attributed to a decrease in BHP from 2.25 MPa to 1.33 MPa.展开更多
A first experimental study on two-phase how patterns at a long-term, steady microgravity condition was conducted on board the Russian Space Station 'MIR' in August 1999. Carbogal and air are used as the liquid...A first experimental study on two-phase how patterns at a long-term, steady microgravity condition was conducted on board the Russian Space Station 'MIR' in August 1999. Carbogal and air are used as the liquid and the gas phase, respectively. Bubble, slug, slug-annular transitional, and annular hows are observed. A new region of annular how with lower liquid superficial velocity is discovered, and the region of the slug-annular transitional flow is wider than that observed by experiments on board the parabolic aircraft. The main patterns are bubble, slug-annular transitional and annular flows based on the experiments on board MIR space station. Some influences on the two-phase how patterns in the present experiments are discussed.展开更多
Based on the two-phase model (Eulerian-Eulerian model), the three dimensional fluid flow in water and that liquid steel systems stirred by one or two multiple gas jets are simulated. In the Eulerian-Eulerian two-phase...Based on the two-phase model (Eulerian-Eulerian model), the three dimensional fluid flow in water and that liquid steel systems stirred by one or two multiple gas jets are simulated. In the Eulerian-Eulerian two-phase model, the gas and the liquid phase are considered to be two different continuous fluids interacting with each other through the finite inter-phase areas. The exchange between the phases is represented by source terms in conversation equations. Turbulence is assumed to be a property of the liquid phase. A new turbulence modification - model is introduced to consider the bubbles movement contribution to and . The dispersion of phases due to turbulence is represented by introducing a diffusion term in mass conservation equation. The mathematical simulation agrees well with the experiment results. The study results indicate that the distance of two nozzles has big effect on fluid flow behavior in the vessel. Using two gas injection nozzles at the half radii of one diameter of the bottom generates a much better mixing than with one nozzle under the condition of the same total gas flow rate.展开更多
In the industrial process of producing the strong phosphoric acid(SPA),clarification of the solution is essential to the ultimate product.However,the large viscosity of sediment and the induced interface interaction r...In the industrial process of producing the strong phosphoric acid(SPA),clarification of the solution is essential to the ultimate product.However,the large viscosity of sediment and the induced interface interaction result in difficulties when the SPA is clarified.CFD numerical methodology was applied to simulate internal flow field and performance of the low speed scraper based on Mixture solidliquid two-phase flow model.Sediment deposition was generated by loading solid particles at the bottom of clarifying vessel.The moving mesh and RNG k-εmodel were used to simulate the rotational turbulent flow in clarifying tank.Variables studied,amongst others,were the scraper rotation speed and the mounting height,which could affect the solid suspension height.Features of flow field and solid volume fraction distribution in computational domain were presented and analyzed.The numerical reports of the scraper torque and velocities of inlet and outlet filed were obtained.It seems the torque value of rotatio-nal axis and particle suspending height augment with an increasing rotating speed.Meanwhile,a high revolving speed is good for the deposition discharge.The particle fraction distribution in meridional surface and horizontal surface at fixed rotation speed were analyzed to determine the corresponding optimal installation height.The simulating results reflect the flow field is marginally stirred by the scraper and proper working parameters are obtained,in which case the comprehensive properties of the scraper and the clarifying tank are superior.展开更多
We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of ...We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of different oil-in-water flows. We first take several typical time series for example to investigate the characteristic of the MS-CECP and find that the MS-CECP not only describes the continuous loss of dynamical structure with the increase of scale, but also reflects the determinacy of the system. Then we calculate the MS-CECP for the conductance fluctuating signals measured from oil–water two-phase flow loop test facility. The results indicate that the MS-CECP could be an intrinsic measure for indicating oil-in-water two-phase flow structures.展开更多
The two fluid model of stratified turbulent two phase flow in aquatic environment is developed in this paper. The motion of each phase is described by a unified multi fluid model in an Eulerian coordinate system. T...The two fluid model of stratified turbulent two phase flow in aquatic environment is developed in this paper. The motion of each phase is described by a unified multi fluid model in an Eulerian coordinate system. The laws of turbulent transportation for each phase, and the restriction of each other between the two phases are completely simulated. The complex two phase turbulence with strong buoyancy effects is selected to examine numerically. The extensive experimental data obtained in stratified flow are used here. Comparison of the results of numerical simulation with the experimental data is conducted. It has shown that the results of numerical simulation are satisfactory.展开更多
Environmental agencies do not allow effluents, from the petroleum productions, which contain oil concentrations that exceed the amounts permitted by the regulations. In recent time heavy oil operating petroleum indust...Environmental agencies do not allow effluents, from the petroleum productions, which contain oil concentrations that exceed the amounts permitted by the regulations. In recent time heavy oil operating petroleum industries are generating oil/water mixture by products, which are difficult to separate. Industrially, hydrocyclone is generally used to separate oil from an oil/water mixture. This is due to its high performance of separation, low cost of installation and maintenance. In the present work, therefore, the thermal fluid dynamics of water/ultra-viscous heavy oil separation process in a hydrocyclone has been studied. A steady state mathematical model which simulates the performance of a non-isothermal separation process is presented. The Eulerian-Eulerian approach for the interface of the phases involved (water/ultra-viscous heavy-oil) is used and the two-phase flow is considered as incompressible, viscous and turbulent. For carrying out numerical solutions of the governing equations the CFX11? commercial code was used. Results of the behavior of the two-fluid flow inside the hydrocyclone and separation efficiency are presented and analyzed. The role of the average temperature of the fluid, oil droplet diameter and the fluid mixture inlet velocity on the separation efficiency of the hydrocyclone are verified.展开更多
A theoretical “drift-flux based thermal-hydraulic mixture-fluid coolant channel model” is presented. It is the basis to a corresponding digital “Coolant Channel Module (CCM)”. This purpose derived “Separate-Regio...A theoretical “drift-flux based thermal-hydraulic mixture-fluid coolant channel model” is presented. It is the basis to a corresponding digital “Coolant Channel Module (CCM)”. This purpose derived “Separate-Region Mixture Fluid Approach” should yield an alternative platform to the currently dominant “Separate-Phase Models” where each phase is treated separately. Contrary to it, a direct procedure could be established with the objective to simulate in an as general as possible way the steady state and transient behaviour of characteristic parameters of single- and/or (now non-separated) two-phase fluids flowing within any type of heated or non-heated coolant channels. Their validity could be confirmed by a wide range of verification and validation runs, showing very satisfactory results. The resulting universally applicable code package CCM should provide a fundamental element for the simulation of thermal-hydraulic situations over a wide range of complex systems (such as different types of heat exchangers and steam generators as being applied in both conventional but also nuclear power stations, 1D and 3D nuclear reactor cores etc). Thereby the derived set of equations for different coolant channels (distinguished by their key numbers) as appearing in these systems can be combined with other ODE-s and non-linear algebraic relations from additional parts of such an overall model. And these can then to be solved by applying an appropriate integration routine. Within the solution procedure, however, mathematical discontinuities can arise. This due to the fact that along such a coolant channel transitions from single- to two-phase flow regimes and vice versa could take place. To circumvent these difficulties it will in the presented approach be proposed that the basic coolant channel (BC) is subdivided into a number of sub-channels (SC-s), each of them being occupied exclusively by only a single or a two-phase flow regime. After an appropriate nodalization of the BC (and thus its SC-s) and after applying a “modified finite volume method” together with other special activities the fundamental set of non-linear thermal-hydraulic partial differential equations together with corresponding constitutive relations can be solved for each SC separately. As a result of such a spatial discretization for each SC type (and thus the entire BC) the wanted set of non-linear ordinary differential equations of 1st order could be established. Obviously, special attention had to be given to the varying SC entrance or outlet positions, describing the movement of boiling boundaries or mixture levels along the channel. Including even the possibility of SC-s to disappear or be created anew during a transient.展开更多
The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study o...The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study of compressible nonconservative two-fluid model, drift-flux model and viscous liquid-gas two-phase flow model. We give the research developments of these three two-phase flow models, respectively. In the last part, we give some open problems about the above models.展开更多
Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two...Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction, then general equations of velocities of solid phase and liquid phase were founded in two-phase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.展开更多
The sand-driven flow is studied from the continuum viewpoint in this paper. The crux of this work is how to model the stresses of the particle phase properly. By analysing the two-fluid model which usually, works in s...The sand-driven flow is studied from the continuum viewpoint in this paper. The crux of this work is how to model the stresses of the particle phase properly. By analysing the two-fluid model which usually, works in solving gas-particle two-phase .flow,. we find that this model has many. deficiencies for studying the sand-driven flow,even for the simplest case- the steady, two-dimensional fully-developed flow.Considering this, we have proposed the three-fluid model in which the upward particles and the downward-particles ore regarded as two kinds of fluids respectively.It is shown that the three-fluid model is better than the two-fluid model in reflecting the internal structure of the flow, region and the influence of the boundary situations on the flow. and it is advantageous to find an approximate solution in that the main components of the particle-phase stresses can be explicitly expressed by those variables in the three-fluid model.In the end, the governing equations as well as the boundary. conditions for the three-fluid model are provided with a discussion.展开更多
In the article, the boundary integral technique is used to salve the hydrodynamic movement. of a train of deformable fluid particles in a tube. When a fluid particle is: in a tube, the total normal stress difference i...In the article, the boundary integral technique is used to salve the hydrodynamic movement. of a train of deformable fluid particles in a tube. When a fluid particle is: in a tube, the total normal stress difference is not constant any more; this force tends to distend and elongate the particle. We find that the difference between the velocity of a deformable fluid particle and a sphere (with the same radius) increases as the distance between the particles decreases, and that the increase in velocity with L'/a' is greater the capillary number, and this increase becomes less pronounced as radius' decreases.展开更多
The erythrocyte and blood flowing in the blood vessel can be treated as the two-phase flow of the mixture of particles and a power-law fluid in a peristaltic tube.In the present work, the peristaltic transport of a po...The erythrocyte and blood flowing in the blood vessel can be treated as the two-phase flow of the mixture of particles and a power-law fluid in a peristaltic tube.In the present work, the peristaltic transport of a power-law fluid and the suspension of particles in a tube is investigated by a perturbation method using the long wavelength approximation. The influence of different parameters on the velocity profile and streamlines is explored. Results show that there is a deflection of the flow field when the power-law index n = 0.5 or 1.5 compared with the Newtonian fluid where the trapping zone is symmetric to a certain cross section. The flux rate and reflux of the material are identified,and the conditions under which the reflux appears are determined. Moreover, a reflux phenomenon occurs near the wall. The trapping zone is related to not only the tube geometry and the flow flux but also the fluid properties. Both the length and width of the trapping zone increase with an increase in θ or φ. The trapping zone is more difficult to produce in the shear-thinning fluid than the shear-thickening fluid.展开更多
The complex liquid film behaviors at flooding in an inclined pipe were investigated with computational fluid dynamic(CFD) approaches. The liquid film behaviors included the dynamic wave characteristics before flooding...The complex liquid film behaviors at flooding in an inclined pipe were investigated with computational fluid dynamic(CFD) approaches. The liquid film behaviors included the dynamic wave characteristics before flooding and the transition of flow pattern when flooding happened. The influences of the surface tension and liquid viscosity were specially analyzed. Comparisons of the calculated velocity at the onset of flooding with the available experimental results showed a good agreement. The calculations verify that the fluctuation frequency and the liquid film thickness are almost unaffected by the superficial gas velocity until the flooding is triggered due to the Kelvin–Helmholtz instability. When flooding triggered at the superficial liquid velocity larger than0.15 m·s-1, the interfacial wave developed to slug flow, while it developed to entrainment flow when it was smaller than 0.08 m·s-1. The interfacial waves were more easily torn into tiny droplets with smaller surface tension, eventually evolving into the mist flow. When the liquid viscosity increases, the liquid film has a thicker holdup with more intensive fluctuations, and more likely developed to the slug flow.展开更多
The turbulent fluid and particle interaction in the turbulent boundary layer for cross how over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating veloc...The turbulent fluid and particle interaction in the turbulent boundary layer for cross how over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating velocities of both phases. Two size ranges of particles (30 mu m similar to 60 mu m and 80 mu m similar to 150 mu m) at certain concentrations were used for considering the effects of particle sizes on the mean velocity profiles and on the turbulent intensity levels. The measurements clearly demonstrated that the larger particles damped fluid turbulence. For the smaller particles, this damping effect was less noticeable. The measurements further showed a delay in the separation point for two phase turbulent cross how over a cylinder.展开更多
文摘Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement.
文摘A mathematical model of two-phase fluid nonlinear flow in the direction of normal of ellipse through low-permeability porous media was established according to a nonlinear flow law expressed in a continuous function with three parameters, a mass conservation law and a concept of turbulent ellipses. A solution to the model was obtained by using a finite difference method and an extrapolation method. Formulas of calculating development index not only before but also after water breaks through an oil well in the condition of two-phase fluid nonlinear flow in the media were derived. An example was discussed. Water saturation distribution was presented. The moving law of drainage front was found. Laws of change of pressure difference with time were recognized. Results show that there is much difference of water saturation distribution between nonlinear flow and linear flow; that drainage front by water moves faster, water breaks through sooner and the index gets worse because of the nonlinear flow; and that dimensionless pressure difference gets larger at the same dimensionless time and difficulty of oil development becomes bigger by the nonlinear flow. Thus, it is necessary that influence of nonlinear flow on development indexes of the oil fields be taken into account. The results provide water-flooding development of the oilfields with scientific basis.
基金Supported by the National Natural Science Foundation of China(10672022)
文摘Linearized equations of fluid dynamics of cell two phase flow for one dimensional case are proposed. Based on the equations, an analytic solution is derived, in which the frequency of wave is observed. The frequency formula consists of all important parameters of the fluid dynamics. In our observation, the group velocity and phase velocity of the motion of wave propagation are explicitly exhibited as well.
基金Project supported by the National Key Basic Research and Development Program of China(No.G1999-0222-08)
文摘The USM-θ model of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collision. In this model, phases interaction and the extra term of Bingham fluid yield stress are taken into account. An algorithm for USM-θ model in dense two-phase flow was proposed, in which the influence of particle volume fraction is accounted for. This model was used to simulate turbulent flow of Bingham fluid single-phase and dense liquid-particle two-phase in pipe. It is shown USM-θ model has better prediction result than the five-equation model, in which the particle-particle collision is modeled by the particle kinetic theory, while the turbulence of both phase is simulated by the two-equation turbulence model. The USM-θ model was then used to simulate the dense two-phase turbulent up flow of Bingham fluid with particles. With the increasing of the yield stress, the velocities of Bingham and particle decrease near the pipe centre. Comparing the two-phase flow of Bingham-particle with that of liquid-particle, it is found the source term of yield stress has significant effect on flow.
基金part of a key project carried out in 2009–2010financially supported by the National Key Sci-Tech Major Special Item (Grant No. 2009ZX05038)
文摘A method is proposed to predict the flowing bottomhole pressures (FBHPs) for two-phase coalbed methane (CBM) wells. The mathematical models for both gas column pressure and two-phase fluid column pressure were developed based on the well liquid flow equation. FBHPs during the production were predicted by considering the effect of entrained liquid on gravitational gradients. Comparison of calculated BHPs by Cullender-Smith and proposed method was also studied. The results show that the proposed algorithm gives the desired accuracy of calculating BHPs in the low- productivity and low-pressure CBM wells. FBHP is resulted from the combined action of wellhead pressure, gas column pressure and fluid column pressure. Variation of kinetic energy term, compressibility and friction factors with depth increments and liquid holdup with velocity should be considered to simulate the real BHPs adequately. BHP is a function of depth of each column segment. The small errors of less than 1.5% between the calculated and measured values are obtained with each segment within 25 m. Adjusting BHPs can effectively increase production pressure drop, which is beneficial to CBM desorption and enhances reservoir productivity. The increment of pressure drop from 5.37 MPa2 to 8.66 MPa2 leads to an increase of CBM production from 3270 m3/d to 6700 m3/d and is attributed to a decrease in BHP from 2.25 MPa to 1.33 MPa.
基金The project supported by the National Natural Science Foundation of China (19789201)the Ministry of Science and Technology of China (95-Yu-34)The Post-doctoral Science Foundation of China
文摘A first experimental study on two-phase how patterns at a long-term, steady microgravity condition was conducted on board the Russian Space Station 'MIR' in August 1999. Carbogal and air are used as the liquid and the gas phase, respectively. Bubble, slug, slug-annular transitional, and annular hows are observed. A new region of annular how with lower liquid superficial velocity is discovered, and the region of the slug-annular transitional flow is wider than that observed by experiments on board the parabolic aircraft. The main patterns are bubble, slug-annular transitional and annular flows based on the experiments on board MIR space station. Some influences on the two-phase how patterns in the present experiments are discussed.
文摘Based on the two-phase model (Eulerian-Eulerian model), the three dimensional fluid flow in water and that liquid steel systems stirred by one or two multiple gas jets are simulated. In the Eulerian-Eulerian two-phase model, the gas and the liquid phase are considered to be two different continuous fluids interacting with each other through the finite inter-phase areas. The exchange between the phases is represented by source terms in conversation equations. Turbulence is assumed to be a property of the liquid phase. A new turbulence modification - model is introduced to consider the bubbles movement contribution to and . The dispersion of phases due to turbulence is represented by introducing a diffusion term in mass conservation equation. The mathematical simulation agrees well with the experiment results. The study results indicate that the distance of two nozzles has big effect on fluid flow behavior in the vessel. Using two gas injection nozzles at the half radii of one diameter of the bottom generates a much better mixing than with one nozzle under the condition of the same total gas flow rate.
基金Graduate Research and Innovation Program in Jiangsu Province(KYZZ16_0286)
文摘In the industrial process of producing the strong phosphoric acid(SPA),clarification of the solution is essential to the ultimate product.However,the large viscosity of sediment and the induced interface interaction result in difficulties when the SPA is clarified.CFD numerical methodology was applied to simulate internal flow field and performance of the low speed scraper based on Mixture solidliquid two-phase flow model.Sediment deposition was generated by loading solid particles at the bottom of clarifying vessel.The moving mesh and RNG k-εmodel were used to simulate the rotational turbulent flow in clarifying tank.Variables studied,amongst others,were the scraper rotation speed and the mounting height,which could affect the solid suspension height.Features of flow field and solid volume fraction distribution in computational domain were presented and analyzed.The numerical reports of the scraper torque and velocities of inlet and outlet filed were obtained.It seems the torque value of rotatio-nal axis and particle suspending height augment with an increasing rotating speed.Meanwhile,a high revolving speed is good for the deposition discharge.The particle fraction distribution in meridional surface and horizontal surface at fixed rotation speed were analyzed to determine the corresponding optimal installation height.The simulating results reflect the flow field is marginally stirred by the scraper and proper working parameters are obtained,in which case the comprehensive properties of the scraper and the clarifying tank are superior.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41174109 and 61104148)the National Science and Technology Major Project of China(Grant No.2011ZX05020-006)the Zhejiang Key Discipline of Instrument Science and Technology,China(Grant No.JL130106)
文摘We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of different oil-in-water flows. We first take several typical time series for example to investigate the characteristic of the MS-CECP and find that the MS-CECP not only describes the continuous loss of dynamical structure with the increase of scale, but also reflects the determinacy of the system. Then we calculate the MS-CECP for the conductance fluctuating signals measured from oil–water two-phase flow loop test facility. The results indicate that the MS-CECP could be an intrinsic measure for indicating oil-in-water two-phase flow structures.
文摘The two fluid model of stratified turbulent two phase flow in aquatic environment is developed in this paper. The motion of each phase is described by a unified multi fluid model in an Eulerian coordinate system. The laws of turbulent transportation for each phase, and the restriction of each other between the two phases are completely simulated. The complex two phase turbulence with strong buoyancy effects is selected to examine numerically. The extensive experimental data obtained in stratified flow are used here. Comparison of the results of numerical simulation with the experimental data is conducted. It has shown that the results of numerical simulation are satisfactory.
文摘Environmental agencies do not allow effluents, from the petroleum productions, which contain oil concentrations that exceed the amounts permitted by the regulations. In recent time heavy oil operating petroleum industries are generating oil/water mixture by products, which are difficult to separate. Industrially, hydrocyclone is generally used to separate oil from an oil/water mixture. This is due to its high performance of separation, low cost of installation and maintenance. In the present work, therefore, the thermal fluid dynamics of water/ultra-viscous heavy oil separation process in a hydrocyclone has been studied. A steady state mathematical model which simulates the performance of a non-isothermal separation process is presented. The Eulerian-Eulerian approach for the interface of the phases involved (water/ultra-viscous heavy-oil) is used and the two-phase flow is considered as incompressible, viscous and turbulent. For carrying out numerical solutions of the governing equations the CFX11? commercial code was used. Results of the behavior of the two-fluid flow inside the hydrocyclone and separation efficiency are presented and analyzed. The role of the average temperature of the fluid, oil droplet diameter and the fluid mixture inlet velocity on the separation efficiency of the hydrocyclone are verified.
文摘A theoretical “drift-flux based thermal-hydraulic mixture-fluid coolant channel model” is presented. It is the basis to a corresponding digital “Coolant Channel Module (CCM)”. This purpose derived “Separate-Region Mixture Fluid Approach” should yield an alternative platform to the currently dominant “Separate-Phase Models” where each phase is treated separately. Contrary to it, a direct procedure could be established with the objective to simulate in an as general as possible way the steady state and transient behaviour of characteristic parameters of single- and/or (now non-separated) two-phase fluids flowing within any type of heated or non-heated coolant channels. Their validity could be confirmed by a wide range of verification and validation runs, showing very satisfactory results. The resulting universally applicable code package CCM should provide a fundamental element for the simulation of thermal-hydraulic situations over a wide range of complex systems (such as different types of heat exchangers and steam generators as being applied in both conventional but also nuclear power stations, 1D and 3D nuclear reactor cores etc). Thereby the derived set of equations for different coolant channels (distinguished by their key numbers) as appearing in these systems can be combined with other ODE-s and non-linear algebraic relations from additional parts of such an overall model. And these can then to be solved by applying an appropriate integration routine. Within the solution procedure, however, mathematical discontinuities can arise. This due to the fact that along such a coolant channel transitions from single- to two-phase flow regimes and vice versa could take place. To circumvent these difficulties it will in the presented approach be proposed that the basic coolant channel (BC) is subdivided into a number of sub-channels (SC-s), each of them being occupied exclusively by only a single or a two-phase flow regime. After an appropriate nodalization of the BC (and thus its SC-s) and after applying a “modified finite volume method” together with other special activities the fundamental set of non-linear thermal-hydraulic partial differential equations together with corresponding constitutive relations can be solved for each SC separately. As a result of such a spatial discretization for each SC type (and thus the entire BC) the wanted set of non-linear ordinary differential equations of 1st order could be established. Obviously, special attention had to be given to the varying SC entrance or outlet positions, describing the movement of boiling boundaries or mixture levels along the channel. Including even the possibility of SC-s to disappear or be created anew during a transient.
基金supported by the National Natural Science Foundation of China(11722104,11671150)supported by the National Natural Science Foundation of China(11571280,11331005)+3 种基金supported by the National Natural Science Foundation of China(11331005,11771150)by GDUPS(2016)the Fundamental Research Funds for the Central Universities of China(D2172260)FANEDD No.201315
文摘The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study of compressible nonconservative two-fluid model, drift-flux model and viscous liquid-gas two-phase flow model. We give the research developments of these three two-phase flow models, respectively. In the last part, we give some open problems about the above models.
基金Project supported by the Talent Fund of the Ministry of Communication of China(No.95050508) the Fund of Western Communication of China(No.200332822047) the Key Science Fund of the Ministry of Communication of China(No.95060233)
文摘Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction, then general equations of velocities of solid phase and liquid phase were founded in two-phase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.
文摘The sand-driven flow is studied from the continuum viewpoint in this paper. The crux of this work is how to model the stresses of the particle phase properly. By analysing the two-fluid model which usually, works in solving gas-particle two-phase .flow,. we find that this model has many. deficiencies for studying the sand-driven flow,even for the simplest case- the steady, two-dimensional fully-developed flow.Considering this, we have proposed the three-fluid model in which the upward particles and the downward-particles ore regarded as two kinds of fluids respectively.It is shown that the three-fluid model is better than the two-fluid model in reflecting the internal structure of the flow, region and the influence of the boundary situations on the flow. and it is advantageous to find an approximate solution in that the main components of the particle-phase stresses can be explicitly expressed by those variables in the three-fluid model.In the end, the governing equations as well as the boundary. conditions for the three-fluid model are provided with a discussion.
文摘In the article, the boundary integral technique is used to salve the hydrodynamic movement. of a train of deformable fluid particles in a tube. When a fluid particle is: in a tube, the total normal stress difference is not constant any more; this force tends to distend and elongate the particle. We find that the difference between the velocity of a deformable fluid particle and a sphere (with the same radius) increases as the distance between the particles decreases, and that the increase in velocity with L'/a' is greater the capillary number, and this increase becomes less pronounced as radius' decreases.
基金supported by the Major Program of National Natural Science Foundation of China(Nos.11632016 and 91634103)
文摘The erythrocyte and blood flowing in the blood vessel can be treated as the two-phase flow of the mixture of particles and a power-law fluid in a peristaltic tube.In the present work, the peristaltic transport of a power-law fluid and the suspension of particles in a tube is investigated by a perturbation method using the long wavelength approximation. The influence of different parameters on the velocity profile and streamlines is explored. Results show that there is a deflection of the flow field when the power-law index n = 0.5 or 1.5 compared with the Newtonian fluid where the trapping zone is symmetric to a certain cross section. The flux rate and reflux of the material are identified,and the conditions under which the reflux appears are determined. Moreover, a reflux phenomenon occurs near the wall. The trapping zone is related to not only the tube geometry and the flow flux but also the fluid properties. Both the length and width of the trapping zone increase with an increase in θ or φ. The trapping zone is more difficult to produce in the shear-thinning fluid than the shear-thickening fluid.
基金Supported by the Major State Basic Research Development Program of China(2011CB706501)the National Natural Science Foundation of China(51276157)
文摘The complex liquid film behaviors at flooding in an inclined pipe were investigated with computational fluid dynamic(CFD) approaches. The liquid film behaviors included the dynamic wave characteristics before flooding and the transition of flow pattern when flooding happened. The influences of the surface tension and liquid viscosity were specially analyzed. Comparisons of the calculated velocity at the onset of flooding with the available experimental results showed a good agreement. The calculations verify that the fluctuation frequency and the liquid film thickness are almost unaffected by the superficial gas velocity until the flooding is triggered due to the Kelvin–Helmholtz instability. When flooding triggered at the superficial liquid velocity larger than0.15 m·s-1, the interfacial wave developed to slug flow, while it developed to entrainment flow when it was smaller than 0.08 m·s-1. The interfacial waves were more easily torn into tiny droplets with smaller surface tension, eventually evolving into the mist flow. When the liquid viscosity increases, the liquid film has a thicker holdup with more intensive fluctuations, and more likely developed to the slug flow.
基金The project supported by the National Natural Science Foundation of China
文摘The turbulent fluid and particle interaction in the turbulent boundary layer for cross how over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating velocities of both phases. Two size ranges of particles (30 mu m similar to 60 mu m and 80 mu m similar to 150 mu m) at certain concentrations were used for considering the effects of particle sizes on the mean velocity profiles and on the turbulent intensity levels. The measurements clearly demonstrated that the larger particles damped fluid turbulence. For the smaller particles, this damping effect was less noticeable. The measurements further showed a delay in the separation point for two phase turbulent cross how over a cylinder.