期刊文献+
共找到231篇文章
< 1 2 12 >
每页显示 20 50 100
Recent advances in two-dimensional nanomaterials-based electrochemical sensors for environmental analysis 被引量:2
1
作者 Shao Su Shimou Chen Chunhai Fan 《Green Energy & Environment》 SCIE 2018年第2期97-106,共10页
With the rapidly increased concerns in environmental pollution, there have been urgent needs to develop fast, sensitive, low-cost and multiplexed sensing devices for the detection of environmental pollutants. Two-dime... With the rapidly increased concerns in environmental pollution, there have been urgent needs to develop fast, sensitive, low-cost and multiplexed sensing devices for the detection of environmental pollutants. Two-dimensional(2D) nanomaterials hold great promise due to their unique chemical and physical properties, which have been extensively employed to monitor the environmental pollutants combined with different detection techniques. In this review, we summarize recent advances in 2D nanomaterials-based electrochemical sensors for detecting heavy metal ions, organic compounds, pesticides, antibiotics and bacteria. We also discuss perspectives and challenges of 2D nanomaterials in environmental monitoring. 展开更多
关键词 Two dimensional nanomaterials Electrochemical sensor Environmental monitoring
下载PDF
Controlled Growth of One-Dimensional Oxide Nanomaterials 被引量:8
2
作者 Xiaosheng FANG Lide ZHANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第1期1-18,共18页
This article reviews the recent developments in the controlled growth of one-dimensional (1D) oxide nanomaterials, including ZnO, SnO2, In203, Ga203, SiOx, MgO, and Al203. The growth of 2D oxide nanomaterials was ca... This article reviews the recent developments in the controlled growth of one-dimensional (1D) oxide nanomaterials, including ZnO, SnO2, In203, Ga203, SiOx, MgO, and Al203. The growth of 2D oxide nanomaterials was carried out in a simple chemical vapor transport and condensation system. This article will begin with a survey of nanotechnology and 1D nanomaterials achieved by many researchers, and then mainly discuss on the controlled growth of ID oxide nanomaterials with their morphologies, sizes, compositions, and microstructures controlled by altering experimental parameters, such as the temperature at the source material and the substrate, temperature gradient in the tube furnace, the total reaction time, the heating rate of the furnace, the gas flow rate, and the starting material. Their roles in the formation of various morphologies are analyzed and discussed. Finally, this review will be concluded with personal perspectives on the future research directions of this area. 展开更多
关键词 Controlled growth ONE-dimensional OXIDE nanomaterials
下载PDF
One-Dimensional (1D) ZnS Nanomaterials and Nanostructures 被引量:3
3
作者 Xiaosheng FANG Lide ZHANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第6期721-736,I0001-I0002,共18页
One-dimensional (1D) nanomaterials and nanostructures have received much attention due to their potential interest for understanding fundamental physical concepts and for applications in constructing nanoscale elect... One-dimensional (1D) nanomaterials and nanostructures have received much attention due to their potential interest for understanding fundamental physical concepts and for applications in constructing nanoscale electric and optoelectronic devices. Zinc sulfide (ZnS) is an important semiconductor compound of Ⅱ-Ⅵ group, and the synthesis of 1D ZnS nanomaterials and nanostructures has been of growing interest owing to their promising application in nanoscale optoelectronic devices. This paper reviews the recent progress on 1D ZnS nanomaterials and nanostructures, including nanowires, nanowire arrays, nanorods, nanobelts or nanoribbons, nanocables, and hierarchical nanostructures etc. This article begins with a survey of various methods that have been developed for generating 1D nanomaterials and nanostructures, and then mainly focuses on structures, synthesis, characterization, formation mechanisms and optical property tuning, and luminescence mechanisms of 1D ZnS nanomaterials and nanostructures. Finally, this review concludes with personal views towards future research on 1D ZnS nanomaterials and nanostructures. 展开更多
关键词 ONE-dimensional ZNS nanomaterials NANOSTRUCTURES
下载PDF
Study on the Binding Interaction of Nanomaterials Tio_2 with Bovine Serum Albumin by Three-Dimensional Fluorescence Spectrometry (TDFS)
4
作者 LIU Mingxue DONG Fa-qin +6 位作者 SUN Shiyong YI Wei XIONG Xing GUO Yuting LIU Yuanyuan HUANG Ting GOU Qingbi 《矿物学报》 CAS CSCD 北大核心 2013年第S1期60-60,共1页
Although scientific and policy bodies have stated that nanomaterials are not intrinsically toxic, there is interest in evaluating if and how many engineered nanomaterials may do harm to the health of mankind and the e... Although scientific and policy bodies have stated that nanomaterials are not intrinsically toxic, there is interest in evaluating if and how many engineered nanomaterials may do harm to the health of mankind and the ecological environment. The interaction between nano-TiO2 and bovine serum albumin (BSA) was studied by using TDFS and UV methods in this research. 展开更多
关键词 nanomateriAL TiO2 BSA three-dimensional FLUORESCENCE SPECTROMETRY interaction
下载PDF
Preparation,Properties,and Applications of Low-Dimensional Molecular Organic Nanomaterials
5
作者 Jun-Sheng Yu Zhao-Lin Yuan Guang-Zhong Xie Ya-Dong Jiang 《Journal of Electronic Science and Technology of China》 2010年第1期3-9,共7页
In recent years, great progress has been made in research and development of small-molecule organic materials with various low-dimensional nanostructures. This paper presents a comprehensive review of recent research ... In recent years, great progress has been made in research and development of small-molecule organic materials with various low-dimensional nanostructures. This paper presents a comprehensive review of recent research progress in this field, including preparation, electronic and optoelectronic properties and applications. First, an introduction gives to the reprecipitation, soft templates methods, and progress in synthesis and morphological control of low-dimensional small-molecule organic nanomaterials. Their unique optical and electronic properties and research progress in these aspects are reviewed and discussed in detail. Applications based on low-dimensional small-molecule organic nanomaterials are briefly described. Finally, some perspectives to the future development of this field are addressed. 展开更多
关键词 Low-dimensional nanostructures on/off fluorescence switches optoelectronic properties repreeipitation method small-molecule organic nanomaterials.
下载PDF
Room-temperature sputtered electrocatalyst WSe2 nanomaterials for hydrogen evolution reaction 被引量:4
6
作者 Jae Hyeon Nam Myeong Je Jang +4 位作者 Hye Yeon Jang Woojin Park Xiaolei Wang Sung Mook Choi Byungjin Cho 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期107-111,I0004,共6页
The low-temperature physical vapor deposition process of atomically thin two-dimensional transition metal dichalcogenide(2D TMD) has been gaining attention owing to the cost-effective production of diverse electrochem... The low-temperature physical vapor deposition process of atomically thin two-dimensional transition metal dichalcogenide(2D TMD) has been gaining attention owing to the cost-effective production of diverse electrochemical catalysts for hydrogen evolution reaction(HER) applications. We, herein, propose a simple route toward the cost-effective physical vapor deposition process of 2D WSe2 layered nanofilms as HER electrochemical catalysts using RF magnetron sputtering at room temperature(<27℃). By controlling the variable sputtering parameters, such as RF power and deposition time, the loading amount and electrochemical surface area(ECSA) of WSe2 films deposited on carbon paper can be carefully determined. The surface of the sputtered WSe2 films are partially oxidized, which may cause spherical-shaped particles. Regardless of the loading amount of WSe2, Tafel slopes of WSe2 electrodes in the HER test are narrowly distributed to be ~120–138 mV dec-1, which indicates the excellent reproducibility of intrinsic catalytic activity. By considering the trade-off between the loading amount and ECSA, the best HER performance is clearly observed in the 200 W-15 min sample with an overpotential of 220 mV at a current density of 10 mA cm-2. Such a simple sputtering method at low temperature can be easily expanded to other 2D TMD electrochemical catalysts, promising potentially practical electrocatalysts. 展开更多
关键词 Two dimensional nanomaterials Sputtering WSe2 nanofilm ELECTROCATALYST Hydrogen evolution reaction
下载PDF
Combination-based nanomaterial designs in single and double dimensions for improved electrodes in lithium ion-batteries and faradaic supercapacitors 被引量:2
7
作者 Tuyet Nhung Pham Duckshin Park +4 位作者 Yongil Lee Il Tae Kim Jaehyun Hur You-Kwan Oh Young-Chul Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第11期119-146,共28页
In the past decade, researchers in the fields of energy production have concentrated on the improvement of new energy storage devices. Lithium-ion batteries(LIBs) and faradaic supercapacitors(FSs) have attracted speci... In the past decade, researchers in the fields of energy production have concentrated on the improvement of new energy storage devices. Lithium-ion batteries(LIBs) and faradaic supercapacitors(FSs) have attracted special attention as a result of the rapid development of new electrode nanomaterials, especially hybrid nanomaterials, which can meet the increasingly higher requirements for future energy, such as the capability to deliver high-power performance and an extremely long life cycle. In these hybrid nanostructures, a series of synergistic effects and unique properties arising from the combination of individual components are a major factor leading to improved charge/discharge capability, energy density, and system lifetime. This paper describes the most recent progress in the growth of hybrid electrode materials for LIBs and FSs systems, focusing on the combination of zero-dimensional(0 D), one-dimensional(1 D), two-dimensional(2 D), and three-dimensional(3 D) nanomaterials, respectively. 展开更多
关键词 Hybrid nanomaterials SYNERGISTIC effects ZERO-dimensional nanomaterials One-dimensional nanomaterials Two-dimensional nanomaterials Three-dimensional nanomaterials
下载PDF
High-Performance Li-ion Batteries and Super-capacitors Based on Prospective 1-D Nanomaterials 被引量:9
8
作者 Dandan Zhao Ying Wang Yafei Zhang 《Nano-Micro Letters》 SCIE EI CAS 2011年第1期62-71,共10页
One-dimensional(1-D) nanomaterials with superior specific capacity, higher rate capability, better cycling peroperties have demonstrated significant advantages for high-performance Li-ion batteries and supercapacito... One-dimensional(1-D) nanomaterials with superior specific capacity, higher rate capability, better cycling peroperties have demonstrated significant advantages for high-performance Li-ion batteries and supercapacitors. This review describes some recent developments on the rechargeable electrodes by using 1-D nanomaterials(such as Li Mn2O4 nanowires, carbon nanofibers, Ni Mo O4 · n H2O nanorods, V2O5 nanoribbons,carbon nanotubes, etc.). New preparation methods and superior electrochemical properties of the 1-D nanomaterials including carbon nanotube(CNT), some oxides, transition metal compounds and polymers, and their composites are emphatically introduced. The VGCF/Li Fe PO4/C triaxial nanowire cathodes for Li-ion battery present a positive cycling performance without any degradation in almost theoretical capacity(160 m Ah/g).The Si nanowire anodes for Li-ion battery show the highest known theoretical charge capacity(4277 m Ah/g),that is about 11 times lager than that of the commercial graphite(372 m Ah/g). The SWCNT/Ni foam electrodes for supercapacitor display small equivalent series resistance(ESR, 52 m?) and impressive high power density(20 k W/kg). The advantages and challenges associated with the application of these materials for energy conversion and storage devices are highlighted. 展开更多
关键词 One-dimensional nanomaterials Li-ion battery SUPERCAPACITOR Electrochemical property
下载PDF
Numerical study on three-dimensional flow field of continuously rotating detonation in a toroidal chamber 被引量:4
9
作者 Xu-Dong Zhang Bao-Chun Fan +2 位作者 Ming-Yue Gui Zhen-Hua Pan Gang Dong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期66-72,共7页
Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate ... Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonation- shock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interest- ing properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems. 展开更多
关键词 Continuously rotating detonation - Three- dimensional flow field structure - Numerical study Detonation parameters deficit ~ Effects of wall geometries
下载PDF
Infinite Three-Dimensional Coordination Polymers: Synthesis and Structures of [Cd (4,4'-bpy)_2 (H_2O)_2]_n (pic)_(2n),[Zn (4,4'-bpy)_2 (H_2O)_2]_n(pic)_(2n) (H_2O)_(2n), and [Zn (4,4'-bpy)_2 (H_2O)_2]_n (4,4'-bpy)_n(H_2O)_n (pic)_(2n) 被引量:1
10
作者 Fu Pei LIANG~1 Zi Lu CHEN~1 +2 位作者 Rui Xiang HU~1 Hong LIANG~1 Zhao Hui ZHOU~2 (1 Department of Chemistry. Guangxi Normal University: Guilin 541004 2 Department of Chemistry. Xiamen University. Xiamen 361005) 《Chinese Chemical Letters》 SCIE CAS CSCD 2000年第4期369-372,共4页
Three Complexes of the formula [Cd (4,4'-bpy)_2 (H_2O)_2]_n. (pic)_(2n) (1) [Zn (4,4'-bpy)_2 (H_2O)]_n (4,4'-bpy)_n(H_2O)_n (pic)-(2n) (2) and [Zn (4,4'-bpy)_2 (H_2O)]_n (4,4'-bpy)_n (pic)-(2n)(H_... Three Complexes of the formula [Cd (4,4'-bpy)_2 (H_2O)_2]_n. (pic)_(2n) (1) [Zn (4,4'-bpy)_2 (H_2O)]_n (4,4'-bpy)_n(H_2O)_n (pic)-(2n) (2) and [Zn (4,4'-bpy)_2 (H_2O)]_n (4,4'-bpy)_n (pic)-(2n)(H_2O)_n (3) (4.4'-bpy = 4.4'-bipyridine. pic = picric anion ) have been synthesized and characterized by elemental analysis and single-crystal x-ray diffraction. They all have infinite three-dimensional network structure. crystallizing in the monoclinic space group C2/c (1) and Cc (2.3). 展开更多
关键词 Clathration. 4. 4' - bipyridine. picric anion. three - dimensional network.
下载PDF
3-Dimensional Body Measurement Technology
11
作者 周旭东 李艳梅 《Journal of Donghua University(English Edition)》 EI CAS 2002年第4期138-140,共3页
3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body... 3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body measurement technology, and recounts the principle and primary structure of some types of 3 - dimensional automatic body measurement system. With this understanding, it discusses prospect of 3- dimensional CAD and virtual technology used in apparel industry. 展开更多
关键词 3 - dimensional BODY measurement technology digital apparel industry quick response virtual fitting apparel NAD
下载PDF
Synthesis,Growth Mechanism,and Applications of Zinc Oxide Nanomaterials 被引量:4
12
作者 Shulin JI Changhui YE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第4期457-472,共16页
This article reviews recent progresses in growth mechanism, synthesis, and applications of zinc oxide nano-materials (mainly focusing on one-dimensional (1D) nanomaterials). In the first part of this article, we b... This article reviews recent progresses in growth mechanism, synthesis, and applications of zinc oxide nano-materials (mainly focusing on one-dimensional (1D) nanomaterials). In the first part of this article, we briefly introduce the importance, the synthesis methods and growth mechanisms, the properties and applications of ZnO 1D nanomaterials. In the second part of this article, the growth mechanisms of ZnO 1D nanomaterials will be discussed in detail in the framework of vapor-liquid-solid (VLS), vapor-solid (VS), and aqueous solution growth (ASG) approaches. Both qualitative and quantitative information will be provided to show how a controlled synthesis of ZnO 1D nanomaterials can be achieved. In the third part of this article, we present recent progresses in our group for the synthesis of ZnO 1D nanomaterials, and the results from other groups will only be mentioned briefly. Especially, experiment designing according to theories will be elaborated to demonstrate the concept of controlled synthesis. In the fourth part of this article, the properties and potential applications of ZnO 1D nanomaterials will be treated. Finally, a summary part will be presented in the fifth section. The future trend of research for ZnO 1D nanomaterials will be pointed out and key issues to be solved will be proposed. 展开更多
关键词 Zinc Oxide ONE-dimensional nanomaterials Controlled synthesis
下载PDF
Parametric study on single shot peening by dimensional analysis method incorporated with finite element method 被引量:2
13
作者 Xian-Qian Wu Xi Wang +2 位作者 Yan-Peng Wei Hong-Wei Song Chen-Guang Huang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期825-837,共13页
Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and re- sistance to corrosion fatigue, cracking, etc. Co... Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and re- sistance to corrosion fatigue, cracking, etc. Compressive re- sidual stress and dent profile are important factors to eval- uate the effectiveness of shot peening process. In this pa- per, the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated. Firstly, dimensionless relations of pro- cessing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were de- duced by dimensional analysis method. Secondly, the in- fluence of each dimensionless parameter on dimensionless variables was investigated by the finite element method. Fur- thermore, related empirical formulas were given for each di- mensionless parameter based on the simulation results. Fi- nally, comparison was made and good agreement was found between the simulation results and the empirical formula, which shows that a useful approach is provided in this pa- per for analyzing the influence of each individual parameter. 展开更多
关键词 Keywords Shot peening - Maximum compressive residualstress Maximum depth of the dent dimensional analysismethod ~ Finite element method
下载PDF
液相剥离法高效制备石墨烯的研究进展 被引量:1
14
作者 李文鹏 刘晴 +4 位作者 杨志荣 高展鹏 王景涛 周鸣亮 张金利 《化工进展》 EI CAS CSCD 北大核心 2024年第1期215-231,共17页
石墨烯是一种具有优良物理化学性质的二维纳米材料,广泛应用于电池、催化、传感器、印刷、生物医药等领域。然而,石墨烯及其衍生产品的应用与发展面临着巨大挑战——低成本、高品质、规模化生产。本文综述了液相剥离法高效制备石墨烯的... 石墨烯是一种具有优良物理化学性质的二维纳米材料,广泛应用于电池、催化、传感器、印刷、生物医药等领域。然而,石墨烯及其衍生产品的应用与发展面临着巨大挑战——低成本、高品质、规模化生产。本文综述了液相剥离法高效制备石墨烯的研究进展,重点探讨了电化学插层法、溶剂插层法、高温膨胀法和微波膨胀法等液相剥离的前处理方法原理以及对石墨烯剥离效果的影响;分析了水基溶剂、有机溶剂和混合溶剂等剥离溶剂的优缺点与选取原则;对比了超声、高剪切和微通道等过程强化设备的剥离原理和优缺点;简述了离心分离的后处理方法以及分离效果;最后对液相剥离法宏量制备石墨烯的发展趋势进行了展望:通过结合人工智能等方法进行多目标优化,开发无残留的功能化插层剂并匹配温和快速的膨胀方法,寻找低毒、低沸点、高分散的溶剂体系,精确调控液相剥离设备作用机理,设计连续化梯级离心设备,实现液相剥离制备石墨烯的连续化、规模化、低成本快速制备。 展开更多
关键词 石墨烯 液相剥离 二维纳米材料 高剪切 微通道 高效制备
下载PDF
零维纳米碳基靶向药物递送系统在肿瘤治疗中的研究进展(综述)
15
作者 陈琳 钟雅美 于世平 《太原理工大学学报》 CAS 北大核心 2024年第3期399-413,共15页
【目的】零维纳米碳基靶向药物递送系统是以具有良好稳定性和生物相容性的纳米碳材料作为药物载体,担载药物、基因以及靶向组分构建的药物递送复合体,在肿瘤治疗领域具有重要的应用价值。【方法】对零维纳米碳基药物载体的结构、靶向药... 【目的】零维纳米碳基靶向药物递送系统是以具有良好稳定性和生物相容性的纳米碳材料作为药物载体,担载药物、基因以及靶向组分构建的药物递送复合体,在肿瘤治疗领域具有重要的应用价值。【方法】对零维纳米碳基药物载体的结构、靶向药物递送系统的构建及其在化学治疗、基因治疗和诊疗一体化中的应用进行综述。首先,对零维纳米碳材料进行分类。其次,从靶向修饰和药物担载两个方面总结纳米碳基靶向药物递送系统的构建策略。最后,对零维纳米碳基靶向药物递送系统的应用进展进行综述,进而给出其目前在肿瘤治疗中所面临的问题。【结论】为零维纳米碳基靶间药物递送系统在生物医学领域的广泛应用提供可借鉴的理论和实践经验。 展开更多
关键词 零维纳米碳 靶向 药物递送系统 肿瘤治疗
下载PDF
STRENGTH, PLASTICITY, INTERLAYER INTERACTIONS AND PHASE TRANSITION OF LOW-DIMENSIONAL NANOMATERIALS UNDER MULTIPLE FIELDS 被引量:2
16
作者 Wanlin Guo Yufeng Guo +1 位作者 Zhuhua Zhang Lifeng Wang 《Acta Mechanica Solida Sinica》 SCIE EI 2012年第3期221-243,共23页
Atoms are hold together to form different materials and devices through short range interactions such as chemical bonds and long range interactions such as the van der Waals force and electromagnetic interactions. Qua... Atoms are hold together to form different materials and devices through short range interactions such as chemical bonds and long range interactions such as the van der Waals force and electromagnetic interactions. Quantum mechanics is powerful to describe the short range interactions of materials at the nanometer scale, while molecular mechanics and dynamics based on empirical potentials are able to simulate material behaviors at much large scales, but weak in handling of processes including charge transfer and redistributions, such as mechanical-electric coupling of functional nanomaterials, plastic deformation~ fracture and phase transition of nano- materials. These issues are also challenging to quantum mechanics which needs to be extended to van der Waals distance and larger spatial as well as temporal scales. Here, we make brief review and discussions on such kind of mechanical behaviors of some important functional nanomaterials and nanostructures, to probe the frontier of nanomechanics and the trend to multiscale physical mechanics. 展开更多
关键词 low-dimensional nanomaterials nano device physical mechanics multiple fieldcoupling multiscale
原文传递
One-dimensional and two-dimensional nanomaterials for the detection of multiple biomolecules
17
作者 Quan Wang Xudong Wang +2 位作者 Min Xu Xiaoding Lou Fan Xia 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第9期1557-1564,共8页
The complexity of biological samples determines that the detection of a single biomolecule is unable to satisfy actual needs. Moreover, the "false positives" results caused by a single biomolecule detections... The complexity of biological samples determines that the detection of a single biomolecule is unable to satisfy actual needs. Moreover, the "false positives" results caused by a single biomolecule detections easily leads to erroneous clinical diagnosis and treatment. Thus, it is important for the homogenous quantification of multiple biomolecules in not only basic research but also practical application. As a consequent, a large number of literatures have been exploited to monitor multiple biomolecules in homogenous solution, enabling facilitating the development of the disease diagnosis, treatment as well as drug discovery. One-dimensional nanomaterials and two-dimensional nanomaterials have special physical and chemical properties, such as good electrochemical properties, stable structure, large specific surface area, and biocompatibility, which are widely used in electrochemical and fluorescent detection of biomolecules. This tutorial review highlights the recent development for the detection of multiple biomolecules by using nanomaterials including one-dimensional materials(1DMs) as well as twodimensional materials(2DMs). 展开更多
关键词 ONE-dimensional nanomaterials TWO-dimensional nanomaterials DETECTION MULTIPLE TARGETS Biomolecules
原文传递
二维GO、MXene和MoS_(2)限域离子液体复合膜用于碳捕集
18
作者 赵中源 侯铎 +4 位作者 关鹏 黄国贤 周涛 李飞 骆文佳 《膜科学与技术》 CAS CSCD 北大核心 2024年第4期214-226,共13页
工业化的急速发展导致大气中CO_(2)的浓度急剧增加,给人类的生活带来了严重的威胁.因此,亟需发展碳捕集、利用与封存技术用于降低CO_(2)的排放量.在多种方法中,膜分离技术逐渐成为全球碳捕集技术的主要发展方向.膜材料是膜的核心,随着... 工业化的急速发展导致大气中CO_(2)的浓度急剧增加,给人类的生活带来了严重的威胁.因此,亟需发展碳捕集、利用与封存技术用于降低CO_(2)的排放量.在多种方法中,膜分离技术逐渐成为全球碳捕集技术的主要发展方向.膜材料是膜的核心,随着新型制膜材料的不断涌现,一系列高性能气体分离膜层出不穷.离子液体(ILs)作为一种新型材料,因其在CO_(2)分离过程中具有不易挥发、结构可调、对CO_(2)有优异的亲和力等特点而备受欢迎.然而,由于ILs的高黏度和高成本限制了其在工业领域的应用.将ILs与二维纳米材料相结合,得到的新型复合膜兼具ILs和二维纳米材料的优势,可突破ILs的缺陷,成为未来膜材料的研究趋势之一.本综述以ILs为核心,重点介绍了将IL限域于二维氧化石墨烯(GO)、MXene和MoS_(2)纳米材料的研究进展,讨论了ILs的性质;总结了不同ILs与二维GO、MXene和MoS_(2)材料所构建的气体分离膜在CO_(2)捕获中的应用;讨论了ILs在气体分离领域中的优势和挑战,并提出了未来的研究和发展机会. 展开更多
关键词 离子液体 膜分离 CO_(2)捕获 二维纳米材料
下载PDF
Recent Advances in Atomic-scale Storage Mechanism Studies of Two-dimensional Nanomaterials for Rechargeable Batteries Beyond Li-ion
19
作者 PAN Lu DONG Jinyang +2 位作者 YI Ding YANG Yijun WANG Xi 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2020年第4期560-583,共24页
Developing new types of rechargeable batteries with high energy densities and low cost have received in creasing attentions,aiming to reduce the dependence on high-priced lithium.Bevond Li-ion batteries,the potential ... Developing new types of rechargeable batteries with high energy densities and low cost have received in creasing attentions,aiming to reduce the dependence on high-priced lithium.Bevond Li-ion batteries,the potential alternatives including Na-ion batteries,Li-S batteries and Li-air batteries have been investigated recently,which are required to be viable for commercial applications.From this point of view,to understand the electrochemical reaction mechanisms and kinetics of these batteries has become the key challenge to make breakthroughs in the field of new energy storage.In this review,we present a critical overview of the two dimensional nanomaterials-based batteries(except Li-ion-based batteries)that could meet such demonds.To develop new energy storage devices with more promising performances,the microstructure evolution and atomic scale storage mechanism of these batteries are comprehensively summarized.In addition,the major challenges and opportunities of advanced characterization techniques are finally discussed.We do hope that this review will give the readers a clear and profound understanding of the electrochemical reaction mechanisms and kinetics of the as-discussed batteries.thus effectively contributing to the smart design of future-generation energy storage devices. 展开更多
关键词 Two dimensional(2D)nanomaterial Batteries beyond Li ion In sinu technique Atomic-level Storage mechanism and kinetics
原文传递
静电纺中空结构碳纳米纤维制备与应用研究进展
20
作者 程亚玲 王洪杰 +2 位作者 王赫 阮芳涛 徐珍珍 《材料科学与工程学报》 CAS CSCD 北大核心 2024年第1期166-172,共7页
中空结构碳纳米纤维(HCNFs)是多孔碳纳米纤维材料中的一种,展现出较高的比表面积、发达的孔隙结构以及更多的活性位点,在能源存储器件、过滤和吸附材料、催化剂载体等新兴领域应用广泛。本文综述了HCNFs研究开发的新进展,介绍了HCNFs单... 中空结构碳纳米纤维(HCNFs)是多孔碳纳米纤维材料中的一种,展现出较高的比表面积、发达的孔隙结构以及更多的活性位点,在能源存储器件、过滤和吸附材料、催化剂载体等新兴领域应用广泛。本文综述了HCNFs研究开发的新进展,介绍了HCNFs单轴静电纺丝法和同轴静电纺丝法两种制备方法。主要介绍了HCNFs的复合与掺杂,改变或提高HCNFs的性能,进而扩展HCNFs应用领域。重点介绍了HCNFs在锂二次电池领域、催化领域、超级电容器领域以及吸附领域的应用现状,并对未来HCNFs的发展方向进行了展望,以期为HCNFs的研发提供参考。 展开更多
关键词 静电纺 中空结构 碳纳米纤维 低维纳米材料
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部