Room temperature sputtered inorganic nickel oxide(NiO_(x))is one of the most promising hole transport layers(HTL)for perovskite-sillion 2-terminal tandem solar cells with the aid of ultrathin and compact organic layer...Room temperature sputtered inorganic nickel oxide(NiO_(x))is one of the most promising hole transport layers(HTL)for perovskite-sillion 2-terminal tandem solar cells with the aid of ultrathin and compact organic layers to passivate the surface defects.In this study,the aromatic solvent with different substituent groups was used to regulate the conformation of poly[bis(4-phenyl)(2,4,6-trimethylphenyl)am ine](PTAA)layer.As a result,the single-junction perovskite solar cell(PSC)gained a power conversion efficiency(PCE)of 20.63%,contributing to a 27.21%efficiency for monolithic perovskite/silicon(double-side polished)2-terminal tandem solar cell,by applying the alkyl aromatic solvent to enhance theπ-πstacking of PTAA molecular chains.The tandem solar cell can maintain 95%initial efficiency after aging over 1000 h.This study provides a universal approach for improving the photovoltaic performance of NiO_(x)/polymer-based perovskite/silicon tandem solar cells and other single junction inverted PSCs.展开更多
Objective:To observe the changes in insulin resistance in patients with gestational diabetes mellitus(GDM)based on the detection of serum microRNA-372-3p and glucose transporter protein 4(GLUT4)levels.Methods:We condu...Objective:To observe the changes in insulin resistance in patients with gestational diabetes mellitus(GDM)based on the detection of serum microRNA-372-3p and glucose transporter protein 4(GLUT4)levels.Methods:We conducted a retrospective cohort study of 42 patients who were diagnosed with GDM and hospitalized in our hospital during the period from January 2017 to December 2021 and another 42 patients who had normal pregnancy during the same period by collecting their clinical data.We analyzed their serum microRNA expression profiles and miR-372-3p levels to study the relationship between GDM and insulin resistance.Results:The relative expression of miR-372-3p in the serum of patients in the GDM group was significantly higher than that of patients in the control group,but the GLUT 4 level of the GDM group was significantly lower than that of the control group(P<0.05).Compared with the control group,the GDM group had significantly higher levels of fasting blood glucose(FBG),fasting insulin(FINS),2-hour postprandial blood glucose(2h-BG),total cholesterol(TC),triglyceride(TG),and homeostatic model assessment for insulin resistance(HOMA-IR)index but significantly lower homeostasis model assessment ofβ-cell function(HOMA-β)index(P<0.05).The relative expression of miR-372-3p in serum was independently and positively correlated with HOMA-IR,while the level of GLUT4 was independently and negatively correlated with HOMA-IR(P<0.05).Conclusion:Glycosylated hemoglobin test in the early stages of pregnancy(12–13 weeks of gestation)is important to ensure the health of pregnant women and fetuses.The screening and intervention for elevated glucose in pregnant women act as a guideline for the treatment of GDM.Patients with insulin resistance and related complications such as hyperinsulinemia and hypoglycemia should be given priority.展开更多
Multiple nitrate transporter(NRT)genes exist in the genome of bread wheat,and it is of great importance to identify the elite NRT genes for N-efficient wheat cultivar breeding.A candidate gene association study(CGAS)o...Multiple nitrate transporter(NRT)genes exist in the genome of bread wheat,and it is of great importance to identify the elite NRT genes for N-efficient wheat cultivar breeding.A candidate gene association study(CGAS)of six N use efficiency(NUE)related traits(grain N concentration(GNC),straw N concentration(SNC),grain yield(GY),grain N accumulation(GNA),shoot total N accumulation(STN)and N harvest index(NHI))was performed based on SNPs in 46 NRT2 genes using a panel composed of 286 wheat cultivars.CGAS identified TaNRT2.1-6B as an elite NRT gene that is significantly associated with four(NHI,SNC,GNA and GY)of the six NUE-related traits simultaneously.TaNRT2.1-6B is located on the plasma membrane and acts as a dual-affinity NRT.The overexpression of TaNRT2.1-6B increased the N influx and root growth of wheat,whereas gene silence lines resulted in the opposite effects.The overexpression of TaNRT2.1-6B also improved GY and N accumulation of wheat under either limited or sufficient N conditions.The data provide the TaNRT2.1-6B gene and the two associated SNP markers as promising powerful tools for breeding wheat cultivars with high N uptake ability and NUE.展开更多
In order to investigate the influence on shale gas well productivity caused by gas transport in nanometer- size pores, a mathematical model of multi-stage fractured horizontal wells in shale gas reservoirs is built, w...In order to investigate the influence on shale gas well productivity caused by gas transport in nanometer- size pores, a mathematical model of multi-stage fractured horizontal wells in shale gas reservoirs is built, which considers the influence of viscous flow, Knudsen diffusion, surface diffusion, and adsorption layer thickness. A dis- crete-fracture model is used to simplify the fracture mod- cling, and a finite element method is applied to solve the model. The numerical simulation results indicate that with a decrease in the intrinsic matrix permeability, Knudsen diffusion and surface diffusion contributions to production become large and cannot be ignored. The existence of an adsorption layer on the nanopore surfaces reduces the effective pore radius and the effective porosity, resulting in low production from fractured horizontal wells. With a decrease in the pore radius, considering the adsorption layer, the production reduction rate increases. When the pore radius is less than 10 nm, because of the combined impacts of Knudsen diffusion, surface diffusion, and adsorption layers, the production of multi-stage fractured horizontal wells increases with a decrease in the pore pressure. When the pore pressure is lower than 30 MPa, the rate of production increase becomes larger with a decrease in pore pressure.展开更多
Theπ-πstacking is a well-recognized intermolecular interaction that is responsible for the construction of electron hopping channels in numerous conducting frameworks/aggregates.However,the exact role ofπ-to-πchan...Theπ-πstacking is a well-recognized intermolecular interaction that is responsible for the construction of electron hopping channels in numerous conducting frameworks/aggregates.However,the exact role ofπ-to-πchannels within typical single crystalline organic semiconductors remains unclear as the orientations of these molecules are diverse,and their control usually requires additional side chain groups that misrepresent the intrinsic properties of the original semiconducting molecules.Therefore,the construction of conduction channels with intrinsicπ-πstacking in the molecule-based device is crucial for the utilization of their unique transport characteristics and understanding of the transport mechanism.To this end,we present a molecular intercalation strategy that integrates two-dimensional layered materials with functional organic semiconductor molecules for functional molecule-based electronics.Various organic semiconductor molecules can be effectively intercalated into the van der Waals gaps of semi-metallic TaS_(2) withπ-πstacking configuration and controlled intercalant content.Our results show that the vertical charge transport in the stacking direction shows a tunneling-dominated mechanism that strongly depends on the molecular structures.Furthermore,we demonstrated a new type of molecule-based vertical transistor in which TaS_(2) andπ-πstacked organic molecules function as the electrical contact and the active channel,respectively.On/off ratios as high as 447 are achieved under electrostatic modulation in ionic liquid,comparable to the current state-of-the-art molecular transistors.Our study provides an ideal platform for probing intrinsic charge transport acrossπ-πstacked conjugated molecules and also a feasible approach for the construction of high-performance molecule-based electronic devices.展开更多
AIM To investigate the effect of Hemp seed soft capsule(HSCC) on colonic ion transport and its related mechanisms in constipation rats.METHODS Sprague-Dawley male rats were randomly divided into three groups: normal g...AIM To investigate the effect of Hemp seed soft capsule(HSCC) on colonic ion transport and its related mechanisms in constipation rats.METHODS Sprague-Dawley male rats were randomly divided into three groups: normal group, constipation group and HSSC group. Rats in the constipation and HSSC groups were administrated loperamide 3 mg/kg per day orally for 12 d to induce the constipation model. Then, the HSSC group was given HSSC 0.126 g/kg per day by gavage for 7 d. The normal and constipation groups were treated with distilled water. After the treatment, the fecal wet weight and water content were measured. The basal short-circuit current(Isc) and resistance were measured by an Ussing Chamber. Besides the in vivo drug delivery experiment above, an in vitro drug application experiment was also conducted. The accumulative concentrations of HSSC(0.1 mg/m L, 0.5 mg/m L, 1.0 mg/m L, 2.5 mg/m L, 5.0 mg/m L, 10.0 mg/m L and 25.0 mg/m L) were added to the normal isolatedcolonic mucosa and the Isc was recorded. Further, after the application of either ion(Cl^-or HCO_3^-) substitution, ion channel-related inhibitor(N-phenylanthranilic acid, glybenclamide, 4,4-diisothiocyano-2,2-stilbenedisulfonic acid or bumetanide) or neural pathway inhibitor [tetrodotoxin(TTX), atropine, or hexamethonium], the Isc induced by HSSC was also measured. RESULTS In the constipation group, the fecal wet weight and the water content were decreased in comparison with the normal group(P < 0.01). After the treatment with HSSC, the fecal wet weight and the water content in the HSSC group were increased, compared with the constipation group(P < 0.01). In the constipation group, the basal Isc was decreased and resistance was increased, in comparison with the normal group(P < 0.01). After the treatment with HSSC, the basal Isc was increased(P < 0.05) and resistance was decreased(P < 0.01) in the HSSC group compared with the constipation group. In the in vitro experiment, beginning with the concentration of 1.0 mg/m L, differences in Isc were found between the experimental mucosa(with HSSC added) and control mucosa. The Isc of experimental mucosa was higher than that of control mucosa under the same concentration(1.0 mg/m L, P < 0.05; 2.5-25 mg/m L, P < 0.01). After the Cl^-or HCO_3^-removal and pretreated with different inhibitors(c AMPdependent and Ca^(2+)-dependent Cl^-channels, Na^+-K^+-2 Cl^-cotransporter(NKCC), Na^+-HCO_3^-cotransporter or Cl^-/HCO_3^-exchanger inhibitor), there were differences between experimental mucosa and control mucosa; the Isc of experimental mucosa was lower than that of control mucosa under the same concentration(P < 0.05). Meanwhile, after pretreatment with neural pathway inhibitor(TTX, atropine, or hexamethonium), there were no differences between experimental mucosa and control mucosa under the same concentration(P > 0.05).CONCLUSION HSSC ameliorates constipation by increasing colonic secretion, which is mediated via the coaction of c AMPdependent and Ca^(2+)-dependent Cl^-channels, NKCC, Na^+-HCO_3^-cotransporter or Cl^-/HCO_3^-exchanger.展开更多
In this paper, poly(amide-6-β-ethylene oxide) (PEBA1657) copolymer was used to prepare multilayer polyetherimide (PEI)/polydimethylsiloxane (PDMS)/PEBA1657/PDMS composite membranes by dip-coating method. Permeation b...In this paper, poly(amide-6-β-ethylene oxide) (PEBA1657) copolymer was used to prepare multilayer polyetherimide (PEI)/polydimethylsiloxane (PDMS)/PEBA1657/PDMS composite membranes by dip-coating method. Permeation behaviors of ethylene, ethane, propylene, propane, n-butane, methane and nitrogen through the multilayer composite membranes were investigated over a range of operating temperature and pressure. The permeances of light hydrocarbons through PEI/PDMS/PEBA1657/PDMS composite membranes increase with their increasing condensability, and the olefins are more permeable than their corresponding paraffins. For light hydrocarbons, the gas permeances increase significantly as temperature increasing. When the transmembrane pressure difference increases, the gas permeance increases moderately due to plasticization effect, while their apparent activation energies for permeation decrease.展开更多
The thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are do...The thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are dominated by the thermal-activated polaron hopping in the low temperature range, the Fermi glass behavior in the middle temperature range, and the Anderson localized behavior in the high temperature range. The thermal conductivity presents a plateau at high- temperatures, indicating a glass-like thermal conduction behavior. Both the thermoelectric power factor and the thermal conductivity increase with the increase of the degree of oxygen-reduction. Taking these two factors into account, the oxygen-reduction can still contribute to promoting the thermoelectric figure of merit. The highest ZT value is obtained to be -0.19 at 1073 K in the heaviest oxygen reduced sample.展开更多
BVRI CCD photometry of the poorly studied open cluster NGC 6724 has been carried out down to a limiting magnitude of V-20 mag. The stars of the cluster have been observed using the Newtonian focus (f/4.84) of the 74...BVRI CCD photometry of the poorly studied open cluster NGC 6724 has been carried out down to a limiting magnitude of V-20 mag. The stars of the cluster have been observed using the Newtonian focus (f/4.84) of the 74-inch telescope at Kottamia Astronomical Observatory in Egypt. Also, the 2MASS - JHK system is used to confirm the results we obtained. The main photometric parameters have been estimated for the present object; the diameter is found to be 6 arcmin, the distance is 15304-60pc from the Sun and the age is 900+50Myr. The optical reddening E(B - V) = 0.65 mag, while the infrared reddening is E(J - H) = 0.20 mag. The slope of the mass function distribution and the relaxation time estimations indicate that cluster NGC 6724 is dynamically relaxed.展开更多
Ceramic fuel cells hold an important position for the sustainable energy future using renewable energy sources with high efficiency.The design and synthesis of active materials,interface engineering and having capabil...Ceramic fuel cells hold an important position for the sustainable energy future using renewable energy sources with high efficiency.The design and synthesis of active materials,interface engineering and having capability of low operating temperature is considered as an important factor to further increase the power output and stability of ceramic fuel cell devices.A novel methodology has vital importance to develop new functionalities of existing materials by introducing new different effects.The built-in electric field(BIEF) is one of the most recently used approaches to improve charge transfer and ionic conductivity of solid oxide materials.Herein,we demonstrate gradient doping strategy in CeO_(2)-δstructure to produce BIEF effect and to modulate the proton transport effectively at the surface layer rather than bulk structure.The inclusions of La and Sr metal ions at the surface and Co-metal ions into bulk-layer of CeO_(2)form the gradiently doped structure.The gradient doping into CeO_(2)highly improves the proton transport properties through the surface layer by modifying the energy levels.Moreover,unbalanced charge distribution due to gradient doping produces built-in electric-field to provide extra driving force for protons transport through surface layer.The acquired gradiently doped fluorite structure exhibits remarkable proton conductivity of>0.2 S/cm,as a result ceramic fuel cell shows power output of>1000 mW/cm2while operating at 500℃.This unique work highlights the critical role of gradiently doped electrolyte in electrochemical conversion energy devices and offers new understanding and practices for sustainable energy future.展开更多
利用两台高频地波雷达(ground wave radar,WERA)站对山东半岛北部雷达覆盖海区的浪、流场进行了观测,并且利用海洋-大气-波浪耦合沉积输运模型(coupled-ocean-atmosphere-wave-sediment transport modeling system,COAWST)对该区域的一...利用两台高频地波雷达(ground wave radar,WERA)站对山东半岛北部雷达覆盖海区的浪、流场进行了观测,并且利用海洋-大气-波浪耦合沉积输运模型(coupled-ocean-atmosphere-wave-sediment transport modeling system,COAWST)对该区域的一个强风暴过程进行了数值模拟,对雷达观测数据、现场声学多普勒流速剖面仪(acoustic Doppler current profilers,ADCP)调查数据和数值模拟结果进行比对分析发现,模型模拟的水位变化与ADCP测量结果一致,WERA所观测到的有效波高和ADCP结果比较吻合,模型模拟的ADCP站位的流速相位、大小与雷达观测结果比较接近,与ADCP的结果有一定偏差。雷达观测的海区流场结果与模型反映趋势基本一致,但是在近岸方向上变化较大,其原因可能与ADCP的投放位置、模型的分辨率设置等因素有关。高频地波雷达系统是海岸带动力环境观测的一个有效工具,在实际应用中有着广泛的前景。展开更多
African swine fever(ASF)is an infectious transboundary disease of domestic pigs and wild boar and spreading throughout Eurasia.There is no vaccine and treatment available.Complex immune escape strategies of African sw...African swine fever(ASF)is an infectious transboundary disease of domestic pigs and wild boar and spreading throughout Eurasia.There is no vaccine and treatment available.Complex immune escape strategies of African swine fever virus(ASFV)are crucial factors affecting immune prevention and vaccine development.MGF360 genes have been implicated in the modulation of the IFN-Ⅰresponse.The molecular mechanisms contributing to innate immunity are poorly understood.In this study,we demonstrated that ASFV MGF360-12 L(MGF360 families 12 L protein)significantly inhibited the mRNA transcription and promoter activity of IFN-βand NF-κB,accompanied by decreases of IRF3,STING,TBK1,ISG54,ISG56 and AP-1 m RNA transcription.Also,MGF360-12 L might suppress the nuclear localization of p50 and p65 mediated by classical nuclear localization signal(NLS).Additionally,MGF360-12 L could interact with KPNA2,KPNA3,and KPNA4,which interrupted the interaction between p65 and KPNA2,KPNA3,KPNA4.We further found that MGF360-12 L could interfere with the NF-κB nuclear translocation by competitively inhibiting the interaction between NF-κB and nuclear transport proteins.These findings suggested that MGF360-12 L could inhibit the IFN-Ⅰproduction by blocking the interaction of importinαand NF-κB signaling pathway,which might reveal a novel strategy for ASFV to escape the host innate immune response.展开更多
The 1999 East Asian summer monsoon was very unusual for its weak northward advance and remarkably anomalous climate conditions. The monsoonal southwesterly airflow and related rain belt in East Asia were blocked south...The 1999 East Asian summer monsoon was very unusual for its weak northward advance and remarkably anomalous climate conditions. The monsoonal southwesterly airflow and related rain belt in East Asia were blocked south of the Yangtze River Valley. The monsoonal airflow and major moisture transport conduct shifted eastward and turned northward to Japan from the tropical western Pacific rather than to East China from the South China Sea (SCS) as in normal years. Severe and prolonged drought occurred over extensive areas of North China and heavy precipitation in South China and Japan. The investigation on the possible intrinsic mechanisms related to such an anomalous monsoon year has shown that the unique behavior of intraseasonal oscillation may play an essential role during this process. During this year, the northward propagation of 30-60-day anomalous low-level cyclone/anticyclone collapsed in the region around 20°N and did not extend beyond the latitudes of the Yangtze River basin due to the barrier of strong cold air intrusion from the mid-latitudes. The southwesterly moisture flux on the northwestern flank of the anticyclonic moisture transport system in the western North Pacific, which was regulated by the northward shift of 30-60-day cyclonic/anticyclonic moisture transport, also did not reach the region north of 30°N as well. Under this circumstance, the weak northward advance of the monsoon westerlies and associated northward moisture transport could not arrive in North China and led to the severe droughts there in 1999. The SCS and South China were mostly affected by the airflow in the southern and northern flanks of the same 30-60-day cyclones or anticyclones, respectively, and thus controlled by the nearly reverse zonal wind and moisture convergent/divergent conditions. The rainfall in the SCS and South China showed out-of-phase oscillation through the transient local Hadley circulation, with the rainfall maximum occurring in the SCS (South China) when the 30-60-day anticyclone (cyclone) reached its peak phase.展开更多
Abstract The dopamine transporter (DAT) is involved in the regulation of extracellular dopamine levels. A 40-bp variable-number tandem repeat (VNTR) polymorphism in the 3-untranslated region (3UTR) of the DAT ha...Abstract The dopamine transporter (DAT) is involved in the regulation of extracellular dopamine levels. A 40-bp variable-number tandem repeat (VNTR) polymorphism in the 3-untranslated region (3UTR) of the DAT has been reported to be associated with various phenotypes that are involved in the aberrant regulation of dopaminergic neu- rotransmission. In the present study, we found that miR- 137 and miR-491 caused a marked reduction of DAT expression, thereby influencing neuronal dopamine trans- port. Moreover, the regulation of miR-137 and miR-491 on this transport disappeared after the DAT was silenced. The miR-491 seed region that is located on the VNTR sequence in the 3'UTR of the DAT and the regulatory effect of miR- 491 on the DAT depended on the VNTR copy-number. These data indicate that miR-137 and miR-491 regulate DAT expression and dopamine transport at the post- transcriptional level, suggesting that microRNA may be targeted for the treatment of diseases associated with DAT dysfunction.展开更多
In the face of growing environmental pollution, developing a fuel-cell-driven shunting locomotive is a great challenge in China for environmental protection and energy saving, which combines the environmental advantag...In the face of growing environmental pollution, developing a fuel-cell-driven shunting locomotive is a great challenge in China for environmental protection and energy saving, which combines the environmental advantages of an electric locomotive with the lower infrastructure costs of a diesel-electric locomotive. In this paper, the investigation status and the development trend of the fuel-cell-driven shunting locomotive were introduced. Through innovation of the power system using fuel cells, an experiment prototype of a fuel-cell shunting locomotive was developed, which would reduce the effects on the environment of the existing locomotives. This was the first locomotive to use a proton exchange membrane fuel-cell (PEMFC) power plant in China. From October 2012, we started to test the fuel-cell power plant and further test runs on the test rail-line in Chengdu, Sichuan. The achieved encouraging results can provide fundamental data for the modification of the current individual fuel cell locomotives or further development of the fuel-cell hybrid ones in China.展开更多
基金supported by the National Key R&D Program of China(2018YFB1500103)the National Natural Science Foundation of China(62104082)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(2022A1515010746,2022A1515011228)the Science and Technology Program of Guangzhou(202201010458)。
文摘Room temperature sputtered inorganic nickel oxide(NiO_(x))is one of the most promising hole transport layers(HTL)for perovskite-sillion 2-terminal tandem solar cells with the aid of ultrathin and compact organic layers to passivate the surface defects.In this study,the aromatic solvent with different substituent groups was used to regulate the conformation of poly[bis(4-phenyl)(2,4,6-trimethylphenyl)am ine](PTAA)layer.As a result,the single-junction perovskite solar cell(PSC)gained a power conversion efficiency(PCE)of 20.63%,contributing to a 27.21%efficiency for monolithic perovskite/silicon(double-side polished)2-terminal tandem solar cell,by applying the alkyl aromatic solvent to enhance theπ-πstacking of PTAA molecular chains.The tandem solar cell can maintain 95%initial efficiency after aging over 1000 h.This study provides a universal approach for improving the photovoltaic performance of NiO_(x)/polymer-based perovskite/silicon tandem solar cells and other single junction inverted PSCs.
基金supported by the following projects:Youth Science and Technology Fund of Affiliated Hospital of Hebei University(2017Q024)Baoding City Science and Technology Plan Project(2041zf295),and Hebei University Medical Subject Cultivation Project(2022b03).
文摘Objective:To observe the changes in insulin resistance in patients with gestational diabetes mellitus(GDM)based on the detection of serum microRNA-372-3p and glucose transporter protein 4(GLUT4)levels.Methods:We conducted a retrospective cohort study of 42 patients who were diagnosed with GDM and hospitalized in our hospital during the period from January 2017 to December 2021 and another 42 patients who had normal pregnancy during the same period by collecting their clinical data.We analyzed their serum microRNA expression profiles and miR-372-3p levels to study the relationship between GDM and insulin resistance.Results:The relative expression of miR-372-3p in the serum of patients in the GDM group was significantly higher than that of patients in the control group,but the GLUT 4 level of the GDM group was significantly lower than that of the control group(P<0.05).Compared with the control group,the GDM group had significantly higher levels of fasting blood glucose(FBG),fasting insulin(FINS),2-hour postprandial blood glucose(2h-BG),total cholesterol(TC),triglyceride(TG),and homeostatic model assessment for insulin resistance(HOMA-IR)index but significantly lower homeostasis model assessment ofβ-cell function(HOMA-β)index(P<0.05).The relative expression of miR-372-3p in serum was independently and positively correlated with HOMA-IR,while the level of GLUT4 was independently and negatively correlated with HOMA-IR(P<0.05).Conclusion:Glycosylated hemoglobin test in the early stages of pregnancy(12–13 weeks of gestation)is important to ensure the health of pregnant women and fetuses.The screening and intervention for elevated glucose in pregnant women act as a guideline for the treatment of GDM.Patients with insulin resistance and related complications such as hyperinsulinemia and hypoglycemia should be given priority.
基金funded by the National Natural Science Foundation of China(31972497).
文摘Multiple nitrate transporter(NRT)genes exist in the genome of bread wheat,and it is of great importance to identify the elite NRT genes for N-efficient wheat cultivar breeding.A candidate gene association study(CGAS)of six N use efficiency(NUE)related traits(grain N concentration(GNC),straw N concentration(SNC),grain yield(GY),grain N accumulation(GNA),shoot total N accumulation(STN)and N harvest index(NHI))was performed based on SNPs in 46 NRT2 genes using a panel composed of 286 wheat cultivars.CGAS identified TaNRT2.1-6B as an elite NRT gene that is significantly associated with four(NHI,SNC,GNA and GY)of the six NUE-related traits simultaneously.TaNRT2.1-6B is located on the plasma membrane and acts as a dual-affinity NRT.The overexpression of TaNRT2.1-6B increased the N influx and root growth of wheat,whereas gene silence lines resulted in the opposite effects.The overexpression of TaNRT2.1-6B also improved GY and N accumulation of wheat under either limited or sufficient N conditions.The data provide the TaNRT2.1-6B gene and the two associated SNP markers as promising powerful tools for breeding wheat cultivars with high N uptake ability and NUE.
基金supported by the National Natural Science Foundation of China (No. 51234007, No. 51490654, No. 51504276, and No. 51504277)Program for Changjiang Scholars and Innovative Research Team in University (IRT1294)+3 种基金the Natural Science Foundation of Shandong Province (ZR2014EL016, ZR2014EEP018)China Postdoctoral Science Foundation (No. 2014M551989 and No. 2015T80762)the Major Programs of Ministry of Education of China (No. 311009)Introducing Talents of Discipline to Universities (B08028)
文摘In order to investigate the influence on shale gas well productivity caused by gas transport in nanometer- size pores, a mathematical model of multi-stage fractured horizontal wells in shale gas reservoirs is built, which considers the influence of viscous flow, Knudsen diffusion, surface diffusion, and adsorption layer thickness. A dis- crete-fracture model is used to simplify the fracture mod- cling, and a finite element method is applied to solve the model. The numerical simulation results indicate that with a decrease in the intrinsic matrix permeability, Knudsen diffusion and surface diffusion contributions to production become large and cannot be ignored. The existence of an adsorption layer on the nanopore surfaces reduces the effective pore radius and the effective porosity, resulting in low production from fractured horizontal wells. With a decrease in the pore radius, considering the adsorption layer, the production reduction rate increases. When the pore radius is less than 10 nm, because of the combined impacts of Knudsen diffusion, surface diffusion, and adsorption layers, the production of multi-stage fractured horizontal wells increases with a decrease in the pore pressure. When the pore pressure is lower than 30 MPa, the rate of production increase becomes larger with a decrease in pore pressure.
基金support by the National Natural Science Foundation of China(Nos.22172075,92156024)the Fundamental Research Funds for the Central Universities in China(Nos.0210/14380174,14380273)+4 种基金Beijing National Laboratory for Molecular Sciences(No.BNLMS202107)Thousand Talents Plan of Jiangxi Province(No.jxsq2019102002)support by the National Natural Science Foundation of China(No.22033004)support from Early Career Scheme Project(No.21302821)General Research Fund Project(No.11314322)from the University Grants Committee of Hong Kong.
文摘Theπ-πstacking is a well-recognized intermolecular interaction that is responsible for the construction of electron hopping channels in numerous conducting frameworks/aggregates.However,the exact role ofπ-to-πchannels within typical single crystalline organic semiconductors remains unclear as the orientations of these molecules are diverse,and their control usually requires additional side chain groups that misrepresent the intrinsic properties of the original semiconducting molecules.Therefore,the construction of conduction channels with intrinsicπ-πstacking in the molecule-based device is crucial for the utilization of their unique transport characteristics and understanding of the transport mechanism.To this end,we present a molecular intercalation strategy that integrates two-dimensional layered materials with functional organic semiconductor molecules for functional molecule-based electronics.Various organic semiconductor molecules can be effectively intercalated into the van der Waals gaps of semi-metallic TaS_(2) withπ-πstacking configuration and controlled intercalant content.Our results show that the vertical charge transport in the stacking direction shows a tunneling-dominated mechanism that strongly depends on the molecular structures.Furthermore,we demonstrated a new type of molecule-based vertical transistor in which TaS_(2) andπ-πstacked organic molecules function as the electrical contact and the active channel,respectively.On/off ratios as high as 447 are achieved under electrostatic modulation in ionic liquid,comparable to the current state-of-the-art molecular transistors.Our study provides an ideal platform for probing intrinsic charge transport acrossπ-πstacked conjugated molecules and also a feasible approach for the construction of high-performance molecule-based electronic devices.
基金Supported by the Clinical Medicine Development Project of Beijing Municipal Administration of Hospitals,No.ZYLX201411
文摘AIM To investigate the effect of Hemp seed soft capsule(HSCC) on colonic ion transport and its related mechanisms in constipation rats.METHODS Sprague-Dawley male rats were randomly divided into three groups: normal group, constipation group and HSSC group. Rats in the constipation and HSSC groups were administrated loperamide 3 mg/kg per day orally for 12 d to induce the constipation model. Then, the HSSC group was given HSSC 0.126 g/kg per day by gavage for 7 d. The normal and constipation groups were treated with distilled water. After the treatment, the fecal wet weight and water content were measured. The basal short-circuit current(Isc) and resistance were measured by an Ussing Chamber. Besides the in vivo drug delivery experiment above, an in vitro drug application experiment was also conducted. The accumulative concentrations of HSSC(0.1 mg/m L, 0.5 mg/m L, 1.0 mg/m L, 2.5 mg/m L, 5.0 mg/m L, 10.0 mg/m L and 25.0 mg/m L) were added to the normal isolatedcolonic mucosa and the Isc was recorded. Further, after the application of either ion(Cl^-or HCO_3^-) substitution, ion channel-related inhibitor(N-phenylanthranilic acid, glybenclamide, 4,4-diisothiocyano-2,2-stilbenedisulfonic acid or bumetanide) or neural pathway inhibitor [tetrodotoxin(TTX), atropine, or hexamethonium], the Isc induced by HSSC was also measured. RESULTS In the constipation group, the fecal wet weight and the water content were decreased in comparison with the normal group(P < 0.01). After the treatment with HSSC, the fecal wet weight and the water content in the HSSC group were increased, compared with the constipation group(P < 0.01). In the constipation group, the basal Isc was decreased and resistance was increased, in comparison with the normal group(P < 0.01). After the treatment with HSSC, the basal Isc was increased(P < 0.05) and resistance was decreased(P < 0.01) in the HSSC group compared with the constipation group. In the in vitro experiment, beginning with the concentration of 1.0 mg/m L, differences in Isc were found between the experimental mucosa(with HSSC added) and control mucosa. The Isc of experimental mucosa was higher than that of control mucosa under the same concentration(1.0 mg/m L, P < 0.05; 2.5-25 mg/m L, P < 0.01). After the Cl^-or HCO_3^-removal and pretreated with different inhibitors(c AMPdependent and Ca^(2+)-dependent Cl^-channels, Na^+-K^+-2 Cl^-cotransporter(NKCC), Na^+-HCO_3^-cotransporter or Cl^-/HCO_3^-exchanger inhibitor), there were differences between experimental mucosa and control mucosa; the Isc of experimental mucosa was lower than that of control mucosa under the same concentration(P < 0.05). Meanwhile, after pretreatment with neural pathway inhibitor(TTX, atropine, or hexamethonium), there were no differences between experimental mucosa and control mucosa under the same concentration(P > 0.05).CONCLUSION HSSC ameliorates constipation by increasing colonic secretion, which is mediated via the coaction of c AMPdependent and Ca^(2+)-dependent Cl^-channels, NKCC, Na^+-HCO_3^-cotransporter or Cl^-/HCO_3^-exchanger.
基金Supported by Key Projects in the National Science & Technology Pillar Program (2011BAC08B00)
文摘In this paper, poly(amide-6-β-ethylene oxide) (PEBA1657) copolymer was used to prepare multilayer polyetherimide (PEI)/polydimethylsiloxane (PDMS)/PEBA1657/PDMS composite membranes by dip-coating method. Permeation behaviors of ethylene, ethane, propylene, propane, n-butane, methane and nitrogen through the multilayer composite membranes were investigated over a range of operating temperature and pressure. The permeances of light hydrocarbons through PEI/PDMS/PEBA1657/PDMS composite membranes increase with their increasing condensability, and the olefins are more permeable than their corresponding paraffins. For light hydrocarbons, the gas permeances increase significantly as temperature increasing. When the transmembrane pressure difference increases, the gas permeance increases moderately due to plasticization effect, while their apparent activation energies for permeation decrease.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB632506)the National Natural Science Foundation of China(Grant Nos.51202132 and 51002087)
文摘The thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are dominated by the thermal-activated polaron hopping in the low temperature range, the Fermi glass behavior in the middle temperature range, and the Anderson localized behavior in the high temperature range. The thermal conductivity presents a plateau at high- temperatures, indicating a glass-like thermal conduction behavior. Both the thermoelectric power factor and the thermal conductivity increase with the increase of the degree of oxygen-reduction. Taking these two factors into account, the oxygen-reduction can still contribute to promoting the thermoelectric figure of merit. The highest ZT value is obtained to be -0.19 at 1073 K in the heaviest oxygen reduced sample.
文摘BVRI CCD photometry of the poorly studied open cluster NGC 6724 has been carried out down to a limiting magnitude of V-20 mag. The stars of the cluster have been observed using the Newtonian focus (f/4.84) of the 74-inch telescope at Kottamia Astronomical Observatory in Egypt. Also, the 2MASS - JHK system is used to confirm the results we obtained. The main photometric parameters have been estimated for the present object; the diameter is found to be 6 arcmin, the distance is 15304-60pc from the Sun and the age is 900+50Myr. The optical reddening E(B - V) = 0.65 mag, while the infrared reddening is E(J - H) = 0.20 mag. The slope of the mass function distribution and the relaxation time estimations indicate that cluster NGC 6724 is dynamically relaxed.
基金Project supported by the Fundamental Research Funds for the Central Universities (3203002105A2,4303002184)Jiangsu Provincial Program (JSSCRC2021491)。
文摘Ceramic fuel cells hold an important position for the sustainable energy future using renewable energy sources with high efficiency.The design and synthesis of active materials,interface engineering and having capability of low operating temperature is considered as an important factor to further increase the power output and stability of ceramic fuel cell devices.A novel methodology has vital importance to develop new functionalities of existing materials by introducing new different effects.The built-in electric field(BIEF) is one of the most recently used approaches to improve charge transfer and ionic conductivity of solid oxide materials.Herein,we demonstrate gradient doping strategy in CeO_(2)-δstructure to produce BIEF effect and to modulate the proton transport effectively at the surface layer rather than bulk structure.The inclusions of La and Sr metal ions at the surface and Co-metal ions into bulk-layer of CeO_(2)form the gradiently doped structure.The gradient doping into CeO_(2)highly improves the proton transport properties through the surface layer by modifying the energy levels.Moreover,unbalanced charge distribution due to gradient doping produces built-in electric-field to provide extra driving force for protons transport through surface layer.The acquired gradiently doped fluorite structure exhibits remarkable proton conductivity of>0.2 S/cm,as a result ceramic fuel cell shows power output of>1000 mW/cm2while operating at 500℃.This unique work highlights the critical role of gradiently doped electrolyte in electrochemical conversion energy devices and offers new understanding and practices for sustainable energy future.
文摘利用两台高频地波雷达(ground wave radar,WERA)站对山东半岛北部雷达覆盖海区的浪、流场进行了观测,并且利用海洋-大气-波浪耦合沉积输运模型(coupled-ocean-atmosphere-wave-sediment transport modeling system,COAWST)对该区域的一个强风暴过程进行了数值模拟,对雷达观测数据、现场声学多普勒流速剖面仪(acoustic Doppler current profilers,ADCP)调查数据和数值模拟结果进行比对分析发现,模型模拟的水位变化与ADCP测量结果一致,WERA所观测到的有效波高和ADCP结果比较吻合,模型模拟的ADCP站位的流速相位、大小与雷达观测结果比较接近,与ADCP的结果有一定偏差。雷达观测的海区流场结果与模型反映趋势基本一致,但是在近岸方向上变化较大,其原因可能与ADCP的投放位置、模型的分辨率设置等因素有关。高频地波雷达系统是海岸带动力环境观测的一个有效工具,在实际应用中有着广泛的前景。
基金sponsored by National key Research and Development Program(Grant No.2017YFD0502301)National College Students’innovation and entrepreneurship training program(201910504017)。
文摘African swine fever(ASF)is an infectious transboundary disease of domestic pigs and wild boar and spreading throughout Eurasia.There is no vaccine and treatment available.Complex immune escape strategies of African swine fever virus(ASFV)are crucial factors affecting immune prevention and vaccine development.MGF360 genes have been implicated in the modulation of the IFN-Ⅰresponse.The molecular mechanisms contributing to innate immunity are poorly understood.In this study,we demonstrated that ASFV MGF360-12 L(MGF360 families 12 L protein)significantly inhibited the mRNA transcription and promoter activity of IFN-βand NF-κB,accompanied by decreases of IRF3,STING,TBK1,ISG54,ISG56 and AP-1 m RNA transcription.Also,MGF360-12 L might suppress the nuclear localization of p50 and p65 mediated by classical nuclear localization signal(NLS).Additionally,MGF360-12 L could interact with KPNA2,KPNA3,and KPNA4,which interrupted the interaction between p65 and KPNA2,KPNA3,KPNA4.We further found that MGF360-12 L could interfere with the NF-κB nuclear translocation by competitively inhibiting the interaction between NF-κB and nuclear transport proteins.These findings suggested that MGF360-12 L could inhibit the IFN-Ⅰproduction by blocking the interaction of importinαand NF-κB signaling pathway,which might reveal a novel strategy for ASFV to escape the host innate immune response.
基金Acknowledgements. The study is partially supported by National Natural Science Foundation of China (Grant No. 40605020) and 973 Program 2006CB403604.
文摘The 1999 East Asian summer monsoon was very unusual for its weak northward advance and remarkably anomalous climate conditions. The monsoonal southwesterly airflow and related rain belt in East Asia were blocked south of the Yangtze River Valley. The monsoonal airflow and major moisture transport conduct shifted eastward and turned northward to Japan from the tropical western Pacific rather than to East China from the South China Sea (SCS) as in normal years. Severe and prolonged drought occurred over extensive areas of North China and heavy precipitation in South China and Japan. The investigation on the possible intrinsic mechanisms related to such an anomalous monsoon year has shown that the unique behavior of intraseasonal oscillation may play an essential role during this process. During this year, the northward propagation of 30-60-day anomalous low-level cyclone/anticyclone collapsed in the region around 20°N and did not extend beyond the latitudes of the Yangtze River basin due to the barrier of strong cold air intrusion from the mid-latitudes. The southwesterly moisture flux on the northwestern flank of the anticyclonic moisture transport system in the western North Pacific, which was regulated by the northward shift of 30-60-day cyclonic/anticyclonic moisture transport, also did not reach the region north of 30°N as well. Under this circumstance, the weak northward advance of the monsoon westerlies and associated northward moisture transport could not arrive in North China and led to the severe droughts there in 1999. The SCS and South China were mostly affected by the airflow in the southern and northern flanks of the same 30-60-day cyclones or anticyclones, respectively, and thus controlled by the nearly reverse zonal wind and moisture convergent/divergent conditions. The rainfall in the SCS and South China showed out-of-phase oscillation through the transient local Hadley circulation, with the rainfall maximum occurring in the SCS (South China) when the 30-60-day anticyclone (cyclone) reached its peak phase.
基金supported by grants from the National Postdoctoral Science Foundation,China(2014M552219)the Natural Science Foundation of Guangdong Province,China(2015 A030313889,2015A030401013,2014A030313709,and 2014A030 313710)+1 种基金the Science and Technology Planning Project of Shenzhen Municipality,China(ZDSYS201504301045406,JCYJ20150403110 829621,JCYJ20150403091443301,JCYJ20140415162542975,JCYJ 20140415162338855,JCYJ20140828163634004,and JCYJ201206 16144352139)the Health and Family Planning Commission Project of Shenzhen Municipality,China(201401026)
文摘Abstract The dopamine transporter (DAT) is involved in the regulation of extracellular dopamine levels. A 40-bp variable-number tandem repeat (VNTR) polymorphism in the 3-untranslated region (3UTR) of the DAT has been reported to be associated with various phenotypes that are involved in the aberrant regulation of dopaminergic neu- rotransmission. In the present study, we found that miR- 137 and miR-491 caused a marked reduction of DAT expression, thereby influencing neuronal dopamine trans- port. Moreover, the regulation of miR-137 and miR-491 on this transport disappeared after the DAT was silenced. The miR-491 seed region that is located on the VNTR sequence in the 3'UTR of the DAT and the regulatory effect of miR- 491 on the DAT depended on the VNTR copy-number. These data indicate that miR-137 and miR-491 regulate DAT expression and dopamine transport at the post- transcriptional level, suggesting that microRNA may be targeted for the treatment of diseases associated with DAT dysfunction.
基金supported by the National Natural Science Foundation of China (51177138)the Specialized Research Fund for the Doctoral Program of Higher Education (20100184110015)+3 种基金the International Science and Technology Cooperation and Exchange Research Plan of Sichuan Province (2012HH0007)the Science and Technology Development Plan of Ministry of Railways (2012J012-D)the Fundamental Research Funds for the Central Universities (SWJTU11CX030)the Specialized Research Fund for the Doctoral Program of Higher Education (20120184120011)
文摘In the face of growing environmental pollution, developing a fuel-cell-driven shunting locomotive is a great challenge in China for environmental protection and energy saving, which combines the environmental advantages of an electric locomotive with the lower infrastructure costs of a diesel-electric locomotive. In this paper, the investigation status and the development trend of the fuel-cell-driven shunting locomotive were introduced. Through innovation of the power system using fuel cells, an experiment prototype of a fuel-cell shunting locomotive was developed, which would reduce the effects on the environment of the existing locomotives. This was the first locomotive to use a proton exchange membrane fuel-cell (PEMFC) power plant in China. From October 2012, we started to test the fuel-cell power plant and further test runs on the test rail-line in Chengdu, Sichuan. The achieved encouraging results can provide fundamental data for the modification of the current individual fuel cell locomotives or further development of the fuel-cell hybrid ones in China.