The Flutter suppression using distributed piezoelectric actuators has been analyzed and tested. In constructing the finite element equation, effects of piezoelectric matrices are investigated. LQG method is used in de...The Flutter suppression using distributed piezoelectric actuators has been analyzed and tested. In constructing the finite element equation, effects of piezoelectric matrices are investigated. LQG method is used in designing the control law. In reducing the order of the control law, both balance realization and LK methods are used. For the rational approximation of the unsteady aerodynamic forces LS method is improved. In determining the piezoelectric constants d31 a new dynamic response method is developed. Laser vibrameter is used to pick up the model response and in ground resonance test the model is excited by piezoelectric actuators. Reasonable agreement of the wind tunnel flutter suppression test with calculated results is obtained.展开更多
Streamline box girders are widely applied in the design and construction of long-span bridges all over the world. In order to study the influence of modifications of aerodynamic configuration and accessory components ...Streamline box girders are widely applied in the design and construction of long-span bridges all over the world. In order to study the influence of modifications of aerodynamic configuration and accessory components on flutter and vortex-induced vibration (VIV), more than 60 cases were tested through a 1:50 scale section model. The test results indicates that the aerodynamic configuration and accessory components of streamline box girders can signifi- cantly affect the wind-induced vibration of bridge, which is in good agreement with the experience of past researchers. From the tests carried out, it is observed that if the horizontal angle of the inclined web of the streamline box girder is below 16°, the critical flutter wind speed of bridge will increase remarkably, and the VIV will diminish. The test results also show that the 15° inclined web can restrain the formation of vortex near the tail, and consequently improve the performance of aerodynamic stability of long-span bridges. Finally, a new streamline box girder with 15° inclined web was presented and strongly recommended in the aerodynamic configuration design of long-span bridges.展开更多
The control law synthesis, wind tunnel test and engineering properties ofdigital active flutter suppression system (AFSS) are presented.A method ofdiscretization of continuous domain is adopted in the control law desi...The control law synthesis, wind tunnel test and engineering properties ofdigital active flutter suppression system (AFSS) are presented.A method ofdiscretization of continuous domain is adopted in the control law design, and four kindsof control laws are demonstrated during the wind tunnel test with this method. Thewind tunnel test affirms the correctness of the theoretical computation and the test de-sign. The control law is implemented by use of microcomputer and industry controllerin this test. The engineering properties of the active flutter suppression system are pres-ented. The research on a dynamically scaled wing/ store configuration shows that theflutter speed increases by 20% or so and the performance of the system is basically satis-factory.展开更多
The frequent occurrence of control surface vibration has become one of the key problems affecting aircraft safety. The source of the freeplay of the control surface is studied,and a measurement device is developed. A ...The frequent occurrence of control surface vibration has become one of the key problems affecting aircraft safety. The source of the freeplay of the control surface is studied,and a measurement device is developed. A nonlinear flutter analysis method under trimmed flight condition is proposed based on the discrete state-space method.Consequently,the effects of center-type freeplay and the freeplay with preload on flutter characteristics are analyzed,and the effects of preload on nonlinear flutter are verified by wind tunnel tests of a single wing model.展开更多
For a vibration system with 2 DOF of bend and torsion, its critical flutter wind speed can be calculated by using complex mode frequency iteration (CMFI) method based on MatLab 5.2, the results of which are in agree ...For a vibration system with 2 DOF of bend and torsion, its critical flutter wind speed can be calculated by using complex mode frequency iteration (CMFI) method based on MatLab 5.2, the results of which are in agree with those acquired by wind tunnel test. Not only critical flutter wind speed, but also vibration characteristic of a system under different wind speeds can be determined. CMFI method is suitable for both of separated flow torsional flutter and classic coupling flutter analysis, which is presented by flutter analysis of an ideal thin plate and a bluff bridge deck. Furthermore, it is proved through the investigation of the relationship between flutter derivatives and its critical flutter wind speed that coupling aerodynamic derivatives are necessary for classic coupling flutter to occur.]展开更多
In this study, a multi-input/multi-output(MIMO) time-delay feedback controller is designed to actively suppress the flutter instability of a multiple-actuated-wing(MAW) wind tunnel model in the low subsonic flow r...In this study, a multi-input/multi-output(MIMO) time-delay feedback controller is designed to actively suppress the flutter instability of a multiple-actuated-wing(MAW) wind tunnel model in the low subsonic flow regime. The unsteady aerodynamic forces of the MAW model are computed based on the doublet-lattice method(DLM). As the first attempt, the conventional linear quadratic-Gaussian(LQG) controller is designed to actively suppress the flutter of the MAW model. However, because of the time delay in the control loop, the wind tunnel tests illustrate that the LQG-controlled MAW model has no guaranteed stability margins. To compensate the time delay, hence, a time-delay filter, approximated via the first-order Pade approximation, is added to the LQG controller. Based on the time-delay feedback controller, a new digital control system is constructed by using a fixed-point and embedded digital signal processor(DSP) of high performance. Then, a number of wind tunnel tests are implemented based on the digital control system.The experimental results show that the present time-delay feedback controller can expand the flutter boundary of the MAW model and suppress the flutter instability of the open-loop aeroelastic system effectively.展开更多
A theoretical formulation for time-domain nonlinear aeroelastic analysis of a flexible wing model is presented and validated by wind tunnel tests. A strain-based beam model for nonlinear structural analysis is combine...A theoretical formulation for time-domain nonlinear aeroelastic analysis of a flexible wing model is presented and validated by wind tunnel tests. A strain-based beam model for nonlinear structural analysis is combined with the Unsteady Vortex Lattice Method(UVLM) to form the complete framework for aeroelastic analysis. The nonlinear second-order differential equations are solved by an implicit time integration scheme that incorporates a Newton-Raphson sub-iteration technique. An advanced fiber optic sensing technique is firstly used in a wind tunnel for measuring large structural deformations. In the theoretical study, the nonlinear flutter boundary is determined by analyzing the transient response about the nonlinear static equilibrium with a series of flow velocities. The gust responses of the wing model at various gust frequencies are also studied. Comparisons of the theoretical and experimental results show that the proposed method is suitable for determining the nonlinear flutter boundary and simulating the gust response of flexible wings in the time domain.展开更多
Based on the free vibration test method for extracting flutter derivatives,an experiment on flutter stability of a long-span bridge under simultaneous actions of wind and rain was carried out in a wind tunnel.A separa...Based on the free vibration test method for extracting flutter derivatives,an experiment on flutter stability of a long-span bridge under simultaneous actions of wind and rain was carried out in a wind tunnel.A separated twin-box girder section model was employed as the specimen.The flutter derivatives and critical flutter wind speed of this girder subject to both wind and rain(with various rainfall intensities,wind speeds and attack angles)were obtained,then the flutter stability of the bridge influenced by rainfall was analyzed.Experimental results showed that the flutter derivatives of this bridge depend on the angles of attack of wind flow in the wind and rain fields.Also,rainfall has great effect on three flutter derivatives(H2*,H4* and A4*)and has less effect on other three flutter derivatives(H1*,H3* and A3*).With the increasing rainfall density,the critical flutter velocity first increases and then decreases.Low density of rainfall has the effect of increasing mass,stiffness and damping on bridge decks,and higher density of rainfall has the effect of random inhomogeneous impact on bridge decks.展开更多
Combining the computational fluid dynamics-based numerical simulation with the forced vibration technique for extraction of aerodynamic derivatives, an approach for calculating the aerodynamic derivatives and the crit...Combining the computational fluid dynamics-based numerical simulation with the forced vibration technique for extraction of aerodynamic derivatives, an approach for calculating the aerodynamic derivatives and the critical flutter wind speed for long-span bridges is presented in this paper. The RNG k-ε turbulent model is introduced to establish the governing equations, including the continuity equation and the Navier-Stokes equations, for solving the wind flow field around a two-dimensional bridge section. To illustrate the effectiveness and accuracy of the proposed approach, a simple application to the Hume Bridge in China is provided, and the numerical results show that the aerodynamic derivatives and the critical flutter wind speed obtained agree well with the wind tunnel test results.展开更多
文摘The Flutter suppression using distributed piezoelectric actuators has been analyzed and tested. In constructing the finite element equation, effects of piezoelectric matrices are investigated. LQG method is used in designing the control law. In reducing the order of the control law, both balance realization and LK methods are used. For the rational approximation of the unsteady aerodynamic forces LS method is improved. In determining the piezoelectric constants d31 a new dynamic response method is developed. Laser vibrameter is used to pick up the model response and in ground resonance test the model is excited by piezoelectric actuators. Reasonable agreement of the wind tunnel flutter suppression test with calculated results is obtained.
文摘Streamline box girders are widely applied in the design and construction of long-span bridges all over the world. In order to study the influence of modifications of aerodynamic configuration and accessory components on flutter and vortex-induced vibration (VIV), more than 60 cases were tested through a 1:50 scale section model. The test results indicates that the aerodynamic configuration and accessory components of streamline box girders can signifi- cantly affect the wind-induced vibration of bridge, which is in good agreement with the experience of past researchers. From the tests carried out, it is observed that if the horizontal angle of the inclined web of the streamline box girder is below 16°, the critical flutter wind speed of bridge will increase remarkably, and the VIV will diminish. The test results also show that the 15° inclined web can restrain the formation of vortex near the tail, and consequently improve the performance of aerodynamic stability of long-span bridges. Finally, a new streamline box girder with 15° inclined web was presented and strongly recommended in the aerodynamic configuration design of long-span bridges.
文摘The control law synthesis, wind tunnel test and engineering properties ofdigital active flutter suppression system (AFSS) are presented.A method ofdiscretization of continuous domain is adopted in the control law design, and four kindsof control laws are demonstrated during the wind tunnel test with this method. Thewind tunnel test affirms the correctness of the theoretical computation and the test de-sign. The control law is implemented by use of microcomputer and industry controllerin this test. The engineering properties of the active flutter suppression system are pres-ented. The research on a dynamically scaled wing/ store configuration shows that theflutter speed increases by 20% or so and the performance of the system is basically satis-factory.
基金supported by the National Natural Science Foundation of China(No.11972296)。
文摘The frequent occurrence of control surface vibration has become one of the key problems affecting aircraft safety. The source of the freeplay of the control surface is studied,and a measurement device is developed. A nonlinear flutter analysis method under trimmed flight condition is proposed based on the discrete state-space method.Consequently,the effects of center-type freeplay and the freeplay with preload on flutter characteristics are analyzed,and the effects of preload on nonlinear flutter are verified by wind tunnel tests of a single wing model.
文摘For a vibration system with 2 DOF of bend and torsion, its critical flutter wind speed can be calculated by using complex mode frequency iteration (CMFI) method based on MatLab 5.2, the results of which are in agree with those acquired by wind tunnel test. Not only critical flutter wind speed, but also vibration characteristic of a system under different wind speeds can be determined. CMFI method is suitable for both of separated flow torsional flutter and classic coupling flutter analysis, which is presented by flutter analysis of an ideal thin plate and a bluff bridge deck. Furthermore, it is proved through the investigation of the relationship between flutter derivatives and its critical flutter wind speed that coupling aerodynamic derivatives are necessary for classic coupling flutter to occur.]
基金supported in part by the National Natural Science Foundation of China (No. 10972100)
文摘In this study, a multi-input/multi-output(MIMO) time-delay feedback controller is designed to actively suppress the flutter instability of a multiple-actuated-wing(MAW) wind tunnel model in the low subsonic flow regime. The unsteady aerodynamic forces of the MAW model are computed based on the doublet-lattice method(DLM). As the first attempt, the conventional linear quadratic-Gaussian(LQG) controller is designed to actively suppress the flutter of the MAW model. However, because of the time delay in the control loop, the wind tunnel tests illustrate that the LQG-controlled MAW model has no guaranteed stability margins. To compensate the time delay, hence, a time-delay filter, approximated via the first-order Pade approximation, is added to the LQG controller. Based on the time-delay feedback controller, a new digital control system is constructed by using a fixed-point and embedded digital signal processor(DSP) of high performance. Then, a number of wind tunnel tests are implemented based on the digital control system.The experimental results show that the present time-delay feedback controller can expand the flutter boundary of the MAW model and suppress the flutter instability of the open-loop aeroelastic system effectively.
基金co-supported by the National Key Research and Development Program (No. 2016YFB0200703)Beijing Advanced Discipline Center for Unmanned Aircraft System。
文摘A theoretical formulation for time-domain nonlinear aeroelastic analysis of a flexible wing model is presented and validated by wind tunnel tests. A strain-based beam model for nonlinear structural analysis is combined with the Unsteady Vortex Lattice Method(UVLM) to form the complete framework for aeroelastic analysis. The nonlinear second-order differential equations are solved by an implicit time integration scheme that incorporates a Newton-Raphson sub-iteration technique. An advanced fiber optic sensing technique is firstly used in a wind tunnel for measuring large structural deformations. In the theoretical study, the nonlinear flutter boundary is determined by analyzing the transient response about the nonlinear static equilibrium with a series of flow velocities. The gust responses of the wing model at various gust frequencies are also studied. Comparisons of the theoretical and experimental results show that the proposed method is suitable for determining the nonlinear flutter boundary and simulating the gust response of flexible wings in the time domain.
基金supported by the Key Program of the Major Research Plan of the National Natural Science Foundation of China (Grant No.90815022)the National Natural Science Foundation of China (Grant No. 50908069)
文摘Based on the free vibration test method for extracting flutter derivatives,an experiment on flutter stability of a long-span bridge under simultaneous actions of wind and rain was carried out in a wind tunnel.A separated twin-box girder section model was employed as the specimen.The flutter derivatives and critical flutter wind speed of this girder subject to both wind and rain(with various rainfall intensities,wind speeds and attack angles)were obtained,then the flutter stability of the bridge influenced by rainfall was analyzed.Experimental results showed that the flutter derivatives of this bridge depend on the angles of attack of wind flow in the wind and rain fields.Also,rainfall has great effect on three flutter derivatives(H2*,H4* and A4*)and has less effect on other three flutter derivatives(H1*,H3* and A3*).With the increasing rainfall density,the critical flutter velocity first increases and then decreases.Low density of rainfall has the effect of increasing mass,stiffness and damping on bridge decks,and higher density of rainfall has the effect of random inhomogeneous impact on bridge decks.
基金National Natural Science Foundation of China Under Grant No. 50278029
文摘Combining the computational fluid dynamics-based numerical simulation with the forced vibration technique for extraction of aerodynamic derivatives, an approach for calculating the aerodynamic derivatives and the critical flutter wind speed for long-span bridges is presented in this paper. The RNG k-ε turbulent model is introduced to establish the governing equations, including the continuity equation and the Navier-Stokes equations, for solving the wind flow field around a two-dimensional bridge section. To illustrate the effectiveness and accuracy of the proposed approach, a simple application to the Hume Bridge in China is provided, and the numerical results show that the aerodynamic derivatives and the critical flutter wind speed obtained agree well with the wind tunnel test results.