Throughout the vehicle crash event, the interactions between vehicle, occupant, restraint system (VOR) are complicated and highly non-linear. CAE and physical tests are the most widely used in vehicle passive safety d...Throughout the vehicle crash event, the interactions between vehicle, occupant, restraint system (VOR) are complicated and highly non-linear. CAE and physical tests are the most widely used in vehicle passive safety development, but they can only be done with the detailed 3D model or physical samples. Often some design errors and imperfections are difficult to correct at that time, and a large amount of time will be needed. A restraint system concept design approach which based on single-degree-of-freedom occupant-vehicle model (SDOF) is proposed in this paper. The interactions between the restraint system parameters and the occupant responses in a crash are studied from the view of mechanics and energy. The discrete input and the iterative algorithm method are applied to the SDOF model to get the occupant responses quickly for arbitrary excitations (impact pulse) by MATLAB. By studying the relationships between the ridedown efficiency, the restraint stiffness, and the occupant response, the design principle of the restraint stiffness aiming to reduce occupant injury level during conceptual design is represented. Higher ridedown efficiency means more occupant energy absorbed by the vehicle, but the research result shows that higher ridedown efficiency does not mean lower occupant injury level. A proper restraint system design principle depends on two aspects. On one hand,the restraint system should lead to as high ridedown efficiency as possible, and at the same time, the restraint system should maximize use of the survival space to reduce the occupant deceleration level. As an example, an optimization of a passenger vehicle restraint system is designed by the concept design method above, and the final results are validated by MADYMO, which is the most widely used software in restraint system design, and the sled test. Consequently, a guideline and method for the occupant restraint system concept design is established in this paper.展开更多
A four-degree-of-freedom mathematical model was established to investigate the course stability of an air cushion vehicle (ACV). The forces of aerodynamic,propeller and rudder were obtained by wind tunnel experiments....A four-degree-of-freedom mathematical model was established to investigate the course stability of an air cushion vehicle (ACV). The forces of aerodynamic,propeller and rudder were obtained by wind tunnel experiments. A series of constrained model experiments with horizontal-planar-motion-mechanism (HPMM) were conducted to determine the hydrodynamics. The ACV's course stability was analyzed by using Hurwitz deter-mination method with differential equation of perturbation,and the four-degree-of-freedom course stability was then checked by simulated calculation. The analysis and simulation results show that the course stability of fourdegree-of-freedom is applicable to ACV and is stricter than that of two-degree-of-freedom.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 51075180)Open Foundation of State Key Laboratory of Vehicle NVH and Safety Technology of China (Grant No.NVHSKL-201013)
文摘Throughout the vehicle crash event, the interactions between vehicle, occupant, restraint system (VOR) are complicated and highly non-linear. CAE and physical tests are the most widely used in vehicle passive safety development, but they can only be done with the detailed 3D model or physical samples. Often some design errors and imperfections are difficult to correct at that time, and a large amount of time will be needed. A restraint system concept design approach which based on single-degree-of-freedom occupant-vehicle model (SDOF) is proposed in this paper. The interactions between the restraint system parameters and the occupant responses in a crash are studied from the view of mechanics and energy. The discrete input and the iterative algorithm method are applied to the SDOF model to get the occupant responses quickly for arbitrary excitations (impact pulse) by MATLAB. By studying the relationships between the ridedown efficiency, the restraint stiffness, and the occupant response, the design principle of the restraint stiffness aiming to reduce occupant injury level during conceptual design is represented. Higher ridedown efficiency means more occupant energy absorbed by the vehicle, but the research result shows that higher ridedown efficiency does not mean lower occupant injury level. A proper restraint system design principle depends on two aspects. On one hand,the restraint system should lead to as high ridedown efficiency as possible, and at the same time, the restraint system should maximize use of the survival space to reduce the occupant deceleration level. As an example, an optimization of a passenger vehicle restraint system is designed by the concept design method above, and the final results are validated by MADYMO, which is the most widely used software in restraint system design, and the sled test. Consequently, a guideline and method for the occupant restraint system concept design is established in this paper.
文摘A four-degree-of-freedom mathematical model was established to investigate the course stability of an air cushion vehicle (ACV). The forces of aerodynamic,propeller and rudder were obtained by wind tunnel experiments. A series of constrained model experiments with horizontal-planar-motion-mechanism (HPMM) were conducted to determine the hydrodynamics. The ACV's course stability was analyzed by using Hurwitz deter-mination method with differential equation of perturbation,and the four-degree-of-freedom course stability was then checked by simulated calculation. The analysis and simulation results show that the course stability of fourdegree-of-freedom is applicable to ACV and is stricter than that of two-degree-of-freedom.