The Marangoni effect induced by mass transfer at the interface between two immiscible liquids displays important influence on laboratory and industrial operation of solvent extraction. A systematic numerical study of ...The Marangoni effect induced by mass transfer at the interface between two immiscible liquids displays important influence on laboratory and industrial operation of solvent extraction. A systematic numerical study of the two-dimensional Marangoni effect in a two liquid layer system was conducted. The linear relationship of the inter- facial tension versus the solute concentration was incorporated into a mathematical model accounting for liquid flow and mass transfer in both phases. The typical cases analyzed by Sternling & Scriven (AIChE J., 1959) using the linear instability theory were simulated bv the finite difference method and good agreement between the theory and the numerical simulation was observed. The simulation suggests that the Marangoni convection needs certain time to develop sufficiently in strength and scale to enhance the interphase mass transfer, the Marangoni effect is dynamic and transient, and remains at some stabilized level as long as the mass transfer driving force is kept con- stant. When certain level of shear is imposed at the interface as in most cases of practical significance, the Maran- goni effect is suppressed slightly but progressively as the shear is increased gradually. The present two-dimensional simulation of the Marangoni effect provides some insight into the underlying mechanism and also the basis for further theoretical study of the three-dimensional Marangoni effect in the real world and in chemical engineering applications.展开更多
Rayleigh-Marangoni-Bénard instability in a system of two-layer fluids is studied nu- merically.The convective instabilities in the system of Silicon Oil(10cSt)and Fluorinert(FC70)liquids have been analyzed.The cr...Rayleigh-Marangoni-Bénard instability in a system of two-layer fluids is studied nu- merically.The convective instabilities in the system of Silicon Oil(10cSt)and Fluorinert(FC70)liquids have been analyzed.The critical parameters at onset of convection are presented in a large range of two-layer depth ratios from 0.2 to 5.0.Numerical results show that the instability of the two-layer system depends strongly on its depth ratio.When the depth ratio increases,the instability mode changes from mechanical coupling to thermal coupling.Between these two typical coupling modes, a time-dependent oscillation is detected.Nevertheless,traveling wave states are found in the case of oscillatory instability.The oscillation mode results from the competition between Rayleigh instability and Marangoni effect.展开更多
The aim of this paper is to investigate water transmissionproperties of two-layer weft knitted fabrics and somerelated factors.The author prepared some experimentalfabrics with specific yarns and stitch densities,and ...The aim of this paper is to investigate water transmissionproperties of two-layer weft knitted fabrics and somerelated factors.The author prepared some experimentalfabrics with specific yarns and stitch densities,and mea-sured water vapor permeating rate through the fabricsand liquid water transferability from inner to outerlayer.Results show that the permeating rate is closelyrelated to porosity within fabric while the transferabilitydepends mainly upon the water absorbabilities of fiberson two layers and the degree or their difference.展开更多
In 1999, the space experiments on the Marangoni convection and thermocapillary convection in a system of two immiscible liquid layers in microgravity environment were conducted on board the Chinese scientific satellit...In 1999, the space experiments on the Marangoni convection and thermocapillary convection in a system of two immiscible liquid layers in microgravity environment were conducted on board the Chinese scientific satellite SJ-5. A new system of two-layer liquids such as FC-70 liquid and paraffin was used successfully, with the paraffin melted in the space. Two different test-cells are subjected to a temperature gradient perpendicular or parallel to the interface to study the Marangoni convection and thermocapillary convection, respectively. The experimental data obtained in the first Chinese space experiment of fluid are presented. Two-dimensional numerical simulations of thermocapillary convections are carried out using SIMPLEC method .A reasonable agreement between the experimental investigation and the numerical results is obtained.展开更多
基金Supported by the National Natural Science Foundation of China (20490206, 20576133, 20676134) and Petro China.
文摘The Marangoni effect induced by mass transfer at the interface between two immiscible liquids displays important influence on laboratory and industrial operation of solvent extraction. A systematic numerical study of the two-dimensional Marangoni effect in a two liquid layer system was conducted. The linear relationship of the inter- facial tension versus the solute concentration was incorporated into a mathematical model accounting for liquid flow and mass transfer in both phases. The typical cases analyzed by Sternling & Scriven (AIChE J., 1959) using the linear instability theory were simulated bv the finite difference method and good agreement between the theory and the numerical simulation was observed. The simulation suggests that the Marangoni convection needs certain time to develop sufficiently in strength and scale to enhance the interphase mass transfer, the Marangoni effect is dynamic and transient, and remains at some stabilized level as long as the mass transfer driving force is kept con- stant. When certain level of shear is imposed at the interface as in most cases of practical significance, the Maran- goni effect is suppressed slightly but progressively as the shear is increased gradually. The present two-dimensional simulation of the Marangoni effect provides some insight into the underlying mechanism and also the basis for further theoretical study of the three-dimensional Marangoni effect in the real world and in chemical engineering applications.
基金The project supported by the National Natural Science Foundation of China (10372105) and the Knowledge Innovation Program of Chinese Academy of Sciences (KJCX2-SW-L05)
文摘Rayleigh-Marangoni-Bénard instability in a system of two-layer fluids is studied nu- merically.The convective instabilities in the system of Silicon Oil(10cSt)and Fluorinert(FC70)liquids have been analyzed.The critical parameters at onset of convection are presented in a large range of two-layer depth ratios from 0.2 to 5.0.Numerical results show that the instability of the two-layer system depends strongly on its depth ratio.When the depth ratio increases,the instability mode changes from mechanical coupling to thermal coupling.Between these two typical coupling modes, a time-dependent oscillation is detected.Nevertheless,traveling wave states are found in the case of oscillatory instability.The oscillation mode results from the competition between Rayleigh instability and Marangoni effect.
文摘The aim of this paper is to investigate water transmissionproperties of two-layer weft knitted fabrics and somerelated factors.The author prepared some experimentalfabrics with specific yarns and stitch densities,and mea-sured water vapor permeating rate through the fabricsand liquid water transferability from inner to outerlayer.Results show that the permeating rate is closelyrelated to porosity within fabric while the transferabilitydepends mainly upon the water absorbabilities of fiberson two layers and the degree or their difference.
基金This work was partly supported by the 95-yu-34 of the Department of Science and Technology and the National Natural Science Foundation of China (Grant No. 19789201) Q. S. Liu wishes to thank Prof. J. C. Legros and Dr. Ph.Gerios for their helpful discussi
文摘In 1999, the space experiments on the Marangoni convection and thermocapillary convection in a system of two immiscible liquid layers in microgravity environment were conducted on board the Chinese scientific satellite SJ-5. A new system of two-layer liquids such as FC-70 liquid and paraffin was used successfully, with the paraffin melted in the space. Two different test-cells are subjected to a temperature gradient perpendicular or parallel to the interface to study the Marangoni convection and thermocapillary convection, respectively. The experimental data obtained in the first Chinese space experiment of fluid are presented. Two-dimensional numerical simulations of thermocapillary convections are carried out using SIMPLEC method .A reasonable agreement between the experimental investigation and the numerical results is obtained.