In this work, we obtain the global existence and uniqueness of classical solu-tions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowe...In this work, we obtain the global existence and uniqueness of classical solu-tions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowed. We get the upper and lower bounds of gas and liquid masses n and m by the continuity methods which we use to study the compressible Navier-Stokes equations.展开更多
Assuming a two-component, positive and negative mass, superfluid/supersolid for space (the Winterberg model), we model the Higgs field as a condensate made up of a positive and a negative mass, planckion pair. The con...Assuming a two-component, positive and negative mass, superfluid/supersolid for space (the Winterberg model), we model the Higgs field as a condensate made up of a positive and a negative mass, planckion pair. The connection is shown to be consistent (compatible) with the underlying field equations for each field, and the continuity equation is satisfied for both species of planckions, as well as for the Higgs field. An inherent length scale for space (the vacuum) emerges, which we estimate from previous work to be of the order of, l<sub>+</sub> (0) = l<sub>-</sub> (0) = 5.032E-19 meters, for an undisturbed (unperturbed) vacuum. Thus we assume a lattice structure for space, made up of overlapping positive and negative mass wave functions, ψ<sub>+</sub>, and, ψ<sub>-</sub>, which together bind to form the Higgs field, giving it its rest mass of 125.35 Gev/c<sup>2</sup> with a coherence length equal to its Compton wavelength. If the vacuum experiences an extreme disturbance, such as in a LHC pp collision, it is conjectured that severe dark energy results, on a localized level, with a partial disintegration of the Higgs force field in the surrounding space. The Higgs boson as a quantum excitation in this field results when the vacuum reestablishes itself, within 10<sup>-22</sup> seconds, with positive and negative planckion mass number densities equalizing in the disturbed region. Using our fundamental equation relating the Higgs field, φ, to the planckion ψ<sub>+</sub> and ψ<sub>-</sub> wave functions, we calculate the overall vacuum pressure (equal to vacuum energy density), as well as typical ψ<sub>+</sub> and ψ<sub>-</sub> displacements from equilibrium within the vacuum.展开更多
为能够给星上有效载荷提供一种超静环境,提出一种星上控制力矩陀螺群(CMGs,Control Moment Gyroscopes)的隔振方案,并对所使用的隔振平台的动力学特性进行研究分析.首先介绍了不同参数模型的隔振元件工作原理和参数特性;其次利用牛顿-...为能够给星上有效载荷提供一种超静环境,提出一种星上控制力矩陀螺群(CMGs,Control Moment Gyroscopes)的隔振方案,并对所使用的隔振平台的动力学特性进行研究分析.首先介绍了不同参数模型的隔振元件工作原理和参数特性;其次利用牛顿-欧拉法对含有隔振平台和CMGs的卫星进行动力学建模;最后通过频域和时域的方法分析并对比了各个参数模型下的隔振平台力衰减特性以及对星体姿态稳定度的改善程度.结果表明:两参数加调谐质量阻尼器模型下的隔振平台对共振峰值有一定的衰减作用,三参数模型下的隔振平台在力衰减和对姿态稳定度的改善程度上要明显优于其他2种模型.展开更多
基金Supported by the National Natural Science Foundation of China(11171340)
文摘In this work, we obtain the global existence and uniqueness of classical solu-tions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowed. We get the upper and lower bounds of gas and liquid masses n and m by the continuity methods which we use to study the compressible Navier-Stokes equations.
文摘Assuming a two-component, positive and negative mass, superfluid/supersolid for space (the Winterberg model), we model the Higgs field as a condensate made up of a positive and a negative mass, planckion pair. The connection is shown to be consistent (compatible) with the underlying field equations for each field, and the continuity equation is satisfied for both species of planckions, as well as for the Higgs field. An inherent length scale for space (the vacuum) emerges, which we estimate from previous work to be of the order of, l<sub>+</sub> (0) = l<sub>-</sub> (0) = 5.032E-19 meters, for an undisturbed (unperturbed) vacuum. Thus we assume a lattice structure for space, made up of overlapping positive and negative mass wave functions, ψ<sub>+</sub>, and, ψ<sub>-</sub>, which together bind to form the Higgs field, giving it its rest mass of 125.35 Gev/c<sup>2</sup> with a coherence length equal to its Compton wavelength. If the vacuum experiences an extreme disturbance, such as in a LHC pp collision, it is conjectured that severe dark energy results, on a localized level, with a partial disintegration of the Higgs force field in the surrounding space. The Higgs boson as a quantum excitation in this field results when the vacuum reestablishes itself, within 10<sup>-22</sup> seconds, with positive and negative planckion mass number densities equalizing in the disturbed region. Using our fundamental equation relating the Higgs field, φ, to the planckion ψ<sub>+</sub> and ψ<sub>-</sub> wave functions, we calculate the overall vacuum pressure (equal to vacuum energy density), as well as typical ψ<sub>+</sub> and ψ<sub>-</sub> displacements from equilibrium within the vacuum.
文摘为能够给星上有效载荷提供一种超静环境,提出一种星上控制力矩陀螺群(CMGs,Control Moment Gyroscopes)的隔振方案,并对所使用的隔振平台的动力学特性进行研究分析.首先介绍了不同参数模型的隔振元件工作原理和参数特性;其次利用牛顿-欧拉法对含有隔振平台和CMGs的卫星进行动力学建模;最后通过频域和时域的方法分析并对比了各个参数模型下的隔振平台力衰减特性以及对星体姿态稳定度的改善程度.结果表明:两参数加调谐质量阻尼器模型下的隔振平台对共振峰值有一定的衰减作用,三参数模型下的隔振平台在力衰减和对姿态稳定度的改善程度上要明显优于其他2种模型.