A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long peri...A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate.展开更多
In response to the lack of reliable physical parameters in the process simulation of the butadiene extraction,a large amount of phase equilibrium data were collected in the context of the actual process of butadiene p...In response to the lack of reliable physical parameters in the process simulation of the butadiene extraction,a large amount of phase equilibrium data were collected in the context of the actual process of butadiene production by acetonitrile.The accuracy of five prediction methods,UNIFAC(UNIQUAC Functional-group Activity Coefficients),UNIFAC-LL,UNIFAC-LBY,UNIFAC-DMD and COSMO-RS,applied to the butadiene extraction process was verified using partial phase equilibrium data.The results showed that the UNIFAC-DMD method had the highest accuracy in predicting phase equilibrium data for the missing system.COSMO-RS-predicted multiple systems showed good accuracy,and a large number of missing phase equilibrium data were estimated using the UNIFAC-DMD method and COSMO-RS method.The predicted phase equilibrium data were checked for consistency.The NRTL-RK(non-Random Two Liquid-Redlich-Kwong Equation of State)and UNIQUAC thermodynamic models were used to correlate the phase equilibrium data.Industrial device simulations were used to verify the accuracy of the thermodynamic model applied to the butadiene extraction process.The simulation results showed that the average deviations of the simulated results using the correlated thermodynamic model from the actual values were less than 2%compared to that using the commercial simulation software,Aspen Plus and its database.The average deviation was much smaller than that of the simulations using the Aspen Plus database(>10%),indicating that the obtained phase equilibrium data are highly accurate and reliable.The best phase equilibrium data and thermodynamic model parameters for butadiene extraction are provided.This improves the accuracy and reliability of the design,optimization and control of the process,and provides a basis and guarantee for developing a more environmentally friendly and economical butadiene extraction process.展开更多
Constrained Friction Processing(CFP)is a novel solid-state processing technique suitable for lightweight materials,such Mg-and Al-alloys.The technique enables grain size refinement to fine or even ultrafine scale.In t...Constrained Friction Processing(CFP)is a novel solid-state processing technique suitable for lightweight materials,such Mg-and Al-alloys.The technique enables grain size refinement to fine or even ultrafine scale.In this study,the effect of CFP on the microstructural refinement of AM50 rods is investigated in terms of particle size and morphology of the eutectic and secondary phases originally present in the base material,in particular the eutecticβ-Mg_(17)Al_(12)and Al-Mn phases.For that purpose,as-cast and solution heat-treated base material and processed samples were analyzed.The Al_(8)Mn_(5) intermetallic phase was identified as the main secondary phase present in all samples before and after the processing.A notorious refinement of these particles was observed,starting from particles with an average equivalent length of a few micrometers to around 560 nm after the processing.The refinement of the secondary phase refinement is attributed to a mechanism analogous to the attrition comminution,where the combination of temperature increase and shearing of the material enables the continuous breaking of the brittle intermetallic particles into smaller pieces.As for the eutectic phase,the results indicate the presence of the partially divorcedβ-Mg_(17)Al_(12)particles exclusively in the as-cast base material,indicating that no further phase transformations regarding the eutectic phase,such as dynamic precipitation,occurred after the CFP.In the case of the processed as-cast material analyzed after the CFP,the thermal energy generated during the processing led to temperature values above the solvus limit of the eutectic phase,which associated with the mechanical breakage of the particles,enabled the complete dissolution of this phase.Therefore,CFP was successfully demonstrated to promote an extensive microstructure refinement in multiple aspects,in terms of grain sizes of theα-Mg phase and presence and morphology of the Al-Mn and eutecticβ-Mg_(17)Al_(12).展开更多
Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti...Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.展开更多
This study investigates full liquid phase sintering as a process of fabrication parts from WE43(Mg-4wt.%Y-3wt.%RE-0.7wt.%Zr)alloy using binder jetting additive manufacturing(BJAM).This fabrication process is being dev...This study investigates full liquid phase sintering as a process of fabrication parts from WE43(Mg-4wt.%Y-3wt.%RE-0.7wt.%Zr)alloy using binder jetting additive manufacturing(BJAM).This fabrication process is being developed for use in producing structural or biomedical devices.Specifically,this study focused on achieving a near-dense microstructure with WE43 Mg alloy while substantially reducing the duration of sintering post-processing after BJAM part rendering.The optimal process resulted in microstructure with 2.5%porosity and significantly reduced sintering time.The improved sintering can be explained by the presence of Y_(2)O_(3)and Nd_(2)O_(3)oxide layers,which form spontaneously on the surface of WE43 powder used in BJAM.These layers appear to be crucial in preventing shape distortion of the resulting samples and in enabling the development of sintering necks,particularly under sintering conditions exceeding the liquidus temperature of WE43 alloy.Sintered WE43 specimens rendered by BJAM achieved significant improvement in both corrosion resistance and mechanical properties through reduced porosity levels related to the sintering time.展开更多
The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index met...The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index method (CTIM). It is found that during the relaxation process, the formation and evolution of bcc phase are closely dependent on the initial temperature and structure. During the simulation time scale, when the initial temperature is in the range of supercooled liquid region, the bcc phase can be formed and kept a long time; while it is in the range of glassy region, the bcc phase can be formed at first and then partially transformed into hcp phase; when it decreases to the lower one, the hcp and fcc phases can be directly transformed from the glassy structure without undergoing the metastable bcc phase. The Ostwald's "step rule" is impactful during the isothermal relaxation process of the supercooled and glassy Pb, and the metastable bcc phase plays an important role in the precursor of crystallization.展开更多
The optimum parameters were determined for synthesizing ZrN-Si3N4 composite powder from zircon by carbothermal reduction-nitridation (CTRN) process. The samples were prepared by mixing the carbon black of an average...The optimum parameters were determined for synthesizing ZrN-Si3N4 composite powder from zircon by carbothermal reduction-nitridation (CTRN) process. The samples were prepared by mixing the carbon black of an average particle size less than 30 μm and the zircon of 40 μm with C/ZrSiO4 mass ratios of 0.2, 0.3, 0.4, and 0.5. The prepared samples were subjected to the CTRN process at temperatures of 1673, 1723, 1753, and 1773 K for 6, 9, and 12 h. The CTRN process was conducted in an atmosphere-controlled tubular furnace in a nitrogen gas flow of 1.0 L/rain. All the products were examined by X-ray powder diffraction to determine the transformation. The results showed that the proper transformation of ZrN-Si3N4 occurred at 1773 K for 12 h with a C/ZrSiO4 mass ratio of 0.4.展开更多
M, a particular industrial waste, was selected to detoxify chromium slag at a high temperature. The carbon remaining in M reduced Cr ( Ⅳ ) of Na2 CrO4 borne in the chromium slag to Cr ( Ⅲ ) in the solid phase re...M, a particular industrial waste, was selected to detoxify chromium slag at a high temperature. The carbon remaining in M reduced Cr ( Ⅳ ) of Na2 CrO4 borne in the chromium slag to Cr ( Ⅲ ) in the solid phase reaction, and its thermodynamics and kinetics were studied. The reduction process of Na2CrO4 by carbon produced CO, whiCh'was endothermic. Under the experimental condition, the apparent activation energy was 4. 41 kJ·mol^-1 , the'apparent order of reaction for Na2 CrO4 was equal to one, and the partial pressure of CO was only 0.22 Pa at 1 330℃.展开更多
A novel method for the preparation of single-phase ammonium dimolybdate with industrial ammonium molybdate was studied. Various in- fluential factors were evaluated in the paper, including reaction temperature, reacti...A novel method for the preparation of single-phase ammonium dimolybdate with industrial ammonium molybdate was studied. Various in- fluential factors were evaluated in the paper, including reaction temperature, reaction time, initial molybdenum concentration, initial NH_3 /Mo molar ratio, and stirring speed. Under the optimum experimental conditions, the crystallization rate of product is 85.23%. The X-ray diffraction (XRD) analysis and chemical analysis show that the product is single-phase ammonium dimolybdate, and no impurity phases exist. The scanning electronic microscope (SEM) image reveals uniform particle size, good particle dispersion, and no agglomeration between particles. Meanwhile, the final pH value of acidification was investigated. The total molybdenum recovery can reach up to 99.40%, and the main phases of acidification product are the same as those of raw material with the final pH value of 1.5. This determines that the acidification product can be used as a raw material to produce single-phase ammonium dimolybdate.展开更多
In this study, a two-step heating process is introduced for transient liquid phase ( TLP) diffusion bonding fo r sound joints with T91 heat resistant steels. At first, a short-time higher temperature heatin...In this study, a two-step heating process is introduced for transient liquid phase ( TLP) diffusion bonding fo r sound joints with T91 heat resistant steels. At first, a short-time higher temperature heating step is addressed to melt the interlayer, followed by the second step to complete isothermal solidification at a low temperature. The most critical feature of our new method is producing a non-planar interface at the T9/ heat resistant steels joint. We propose a transitional liquid phase bonding of T91 heat resistant steels by this approach. Since joint microstructures have been studied, we tested the tensile strength to assess joint mechanical property. The result indicates that the solidified bond may contain a primary solid-solution, similar composition to the parent metal and free from precipitates. Joint tensile strength of the joint is not lower than parent materials. Joint bend's strengths are enhanced due to the higher metal-to-metal junction producing a non-planar bond lines. Nevertheless, the traditional transient liquid phase diffusion bonding produces planar ones. Bonding parameters of new process are 1 260 °C for 0. 5 min and 1 230 °C fo r 4 min.展开更多
The phase-transformation in sol-gel preparation of barium hexaferrite and the formation of barium hexaferrite doped with La 3+ were studied by chemical p hase analysis, X-ray diffraction and infrared spectrometry an...The phase-transformation in sol-gel preparation of barium hexaferrite and the formation of barium hexaferrite doped with La 3+ were studied by chemical p hase analysis, X-ray diffraction and infrared spectrometry analysis. The expe rimental results show that phase transformation reactions of FeCO 3, Fe 2O 3 and BaFe 2O 4, barium hexaferrite and γ-Fe 2O 3 take place in the heat tr eatment of gel. While the doping lanthanide ion replace barium ion, an equivalen t quantity of Fe 3+ are reduced to Fe 2+ to maintain the charge equili brium.展开更多
Iodine-sulfur (IS) thermochemical water-splitting cycle is the most promising massive hydrogen production process. To avoid the undesirable side reactions between hydriodic acid(HI) and sulfuric acid (H2SO4), it...Iodine-sulfur (IS) thermochemical water-splitting cycle is the most promising massive hydrogen production process. To avoid the undesirable side reactions between hydriodic acid(HI) and sulfuric acid (H2SO4), it is necessary to purify the two phases formed by the Bunsen reaction. The purification process could be achieved by reverse reaction of the Bunsen reaction. In this study, the purification of the H2SO4 and HI Phases was studied. The purification proceeded in both batches and the continuous mode, the influences of operational parameters, including the reaction temperature, the flow rate of nitrogen gas, and the composition of the raw material solutions, on the purification effect, were investigated. Results showed that the purification of the H2SO4 phase was dominantly-affected by the reaction temperature, and iodine ion in the sulfuric acid phase could be removed completely when the temperature was above 130℃; although, the purification effect of the HI phase improved with increasing of both the flow rate of nitrogen gas and temperature.展开更多
The microstructure and mechanical properties of extruded Mg-Zn alloy containing Y element were investigated in temperature range of 300-450°C and strain rate range of 0.001-1 s-1 through hot compression tests.Pro...The microstructure and mechanical properties of extruded Mg-Zn alloy containing Y element were investigated in temperature range of 300-450°C and strain rate range of 0.001-1 s-1 through hot compression tests.Processing maps were used to indicate optimum conditions and instability zones for hot deformation of alloys.For Mg-Zn and Mg-Zn-Y alloys,peak stress,temperature and strain rate were related by hyperbolic sine function,and activation energies were obtained to be 177 and 236 kJ/mol,respectively.Flow curves showed that the addition of Y element led to increase in peak stress and decrease in peak strain,and indicated that DRX started at lower strains in Mg-Zn-Y alloy than in Mg-Zn alloy.The stability domains of Mg-Zn-Y alloy were indicated in two domains as 1)300°C,0.001 s-1;350°C,0.01-0.1 s-1 and 400°C,0.01 s-1 and 2)450°C,0.01-0.1 s-1.Microstructural observations showed that DRX was the main restoration mechanism for alloys,and fully dynamic recrystallization of Mg-Zn-Y alloy was observed at 450°C.The instability domain in Mg-Zn-Y alloy was located significantly at high strain rates.In addition,the instability zone width of Mg-Zn and Mg-Zn-Y alloys increased with increasing strain,and cracks,twins and severe deformation were considered in these regions.展开更多
In the distributed synthetic aperture radar (SAR), the alternating bistatic mode can perform phase reference without a synchronization link between two satellites compared with the pulsed alternate synchronization m...In the distributed synthetic aperture radar (SAR), the alternating bistatic mode can perform phase reference without a synchronization link between two satellites compared with the pulsed alternate synchronization method. The key of the phase synchronization processing is to extract the oscillator phase differences from the bistatic echoes. A signal model of phase synchronization in the alternating bistatic mode is presented. The phase synchronization processing method is then studied. To reduce the phase errors introduced by SAR imaging, a sub-aperture processing method is proposed. To generalize the sub-aperture processing method, an echo-domain processing method using correlation of bistatic echoes is proposed. Finally, the residual phase errors of the both proposed processing methods are analyzed. Simulation experiments validate the proposed phase synchronization processing method and its phase error analysis results.展开更多
Double main phase process is applied to fabricate [(Pr, Nd)1 – xMMx]13.8FebalM1.5B5.9 (x = 0.5 and 0.7;M = Cu, Al, Co, and Nb) sintered magnets with high misch metal (MM) content. In comparison to the magnets by sing...Double main phase process is applied to fabricate [(Pr, Nd)1 – xMMx]13.8FebalM1.5B5.9 (x = 0.5 and 0.7;M = Cu, Al, Co, and Nb) sintered magnets with high misch metal (MM) content. In comparison to the magnets by single main phase process, the enhanced magnetic properties have been achieved. For magnets of x = 0.7, Hcj increases to 371.9 kA/m by 60.5%, and (BH)max is significantly enhanced to 253.3 kJ/m3 by 56.9%, compared with those of the single main phase magnets of the same nominal composition. In combination with minor loops and magnetic recoil curves, the property improvement of magnets with double main phase method is well explained. As a result, it is demonstrated that double main phase technology is an effective approach to improve the permanent magnetic properties of MM based sintered magnets.展开更多
In this paper, the phase characteristic disturbance model for baseband direct sequence spread spectrum (DSSS) signal in additive white Gaussian noise (AWGN) environment is established, and the probability density func...In this paper, the phase characteristic disturbance model for baseband direct sequence spread spectrum (DSSS) signal in additive white Gaussian noise (AWGN) environment is established, and the probability density function (PDF) of phase characteristic disturbance is obtained. Then a novel receiver model for baseband DSSS signal based on maximum likelihood (ML) criterion is proposed. The simulation results show that, comparing with correlation scheme, the performance of the proposed method for baseband DSSS signal is 1dB worse in AWGN environment. However, if there is narrow interference in the AWGN environment, the proposed method will show better performance up to 2.5dB, and it has good adaptive resistance to narrowband interference located in different frequency points. This method could be used as an alterative communication scheme for military circumstance when existing strong narrowband interference of various frequencies.展开更多
The isothermal precipitating behavior of perovskite phase in oxidized titanium bearing slag was studied by quenching method.The kinetics of precipitating process and crystal growth of perovskite phase was analyzed.The...The isothermal precipitating behavior of perovskite phase in oxidized titanium bearing slag was studied by quenching method.The kinetics of precipitating process and crystal growth of perovskite phase was analyzed.The results show that the precipitating and growth of perovskite are non-equilibrium process at the beginning of isothermal treatment.There are two factors influencing the growth rate of perovskite phase on non-equilibrium condition,one is the supersaturation concentration of perovskite and the other is the coarsening arising from the growth of larger perovskite at the expense of smaller ones.The precipitation kinetics of perovskite phase can be nearly described by the JMAK equation.展开更多
A C–Mn dual-phase steel was soaked at 800°C for 90 s and then either rapidly cooled to 450°C and held for 30 s(process A) or rapidly cooled to 350°C and then reheated to 450°C(process B) to simula...A C–Mn dual-phase steel was soaked at 800°C for 90 s and then either rapidly cooled to 450°C and held for 30 s(process A) or rapidly cooled to 350°C and then reheated to 450°C(process B) to simulate the hot-dip galvanizing process. The influence of the hot-dip galvanizing process on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel(DP600) was investigated using optical microscopy, scanning electron microscopy(SEM), transmission electron microscopy(TEM), and tensile tests. The results showed that, in the case of process A, the microstructure of DP600 was composed of ferrite, martensite, and a small amount of bainite. The granular bainite was formed in the hot-dip galvanizing stage, and martensite islands were formed in the final cooling stage after hot-dip galvanizing. By contrast, in the case of process B, the microstructure of the DP600 was composed of ferrite, martensite, bainite, and cementite. In addition, compared with the yield strength(YS) of the DP600 annealed by process A, that for the DP600 annealed by process B increased by approximately 50 MPa because of the tempering of the martensite formed during rapid cooling. The work-hardening coefficient(n value) of the DP600 steel annealed by process B clearly decreased because the increase of the YS affected the computation result for the n value. However, the ultimate tensile strength(UTS) and elongation(A80) of the DP600 annealed by process B exhibited less variation compared with those of the DP600 annealed by process A. Therefore, DP600 with excellent comprehensive mechanical properties(YS = 362 MPa, UTS = 638 MPa, A_(80) = 24.3%, n = 0.17) was obtained via process A.展开更多
A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and...A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and sulfide inhibition in reactors, were discussed for a JLAFB and a general anaerobic fiuidized bed (AFB) reactor used as sulfate-reducing phase and methane-producing phase, respectively, in two-phase anaerobic digestion process. The formation of granules in the two reactors was also examined. The results indicated that COD and sulfate removal had different demand of influent COD/SO4^2- ratios. When total COD removal was up to 85%, the ratio was only required up to 1.2, whereas, total sulfate removal up to 95% required it exceeding 3.0. The alkalinity in the two reactors increased linearly with the growth of influent alkalinity. Moreover, the change of influent alkalinity had no significant effect on pH and volatile fatty acids (VFA) in the two reactors. Influent alkalinity kept at 400-500 mg/L could meet the requirement of the treating process. The JLAFB reactor had great advantage in avoiding sulfide and free-H2S accumulation and toxicity inhibition on microorganisms. When sulfate loading rate was up to 8. 1 kg/(m^3.d), the sulfide and free-H2S concentrations in JLAFB reactor were 58.6 and 49.7 mg/L, respectively. Furthermore, the granules, with offwhite color, ellipse shape and diameters of 1.0-3.0 mm, could be developed in JLAFB reactor. In granules, different groups of bacteria were distributed in different layers, and some inorganic metal compounds such as Fe, Ca, Mg etc. were found.展开更多
Kinetics models of COD degradation,biomass growth of the anoxic-oxic ( A/O) system as well as NH3-N degradation in aerobic phase were presented according to the mass balance theory,reaction-diffusion theory and Fick l...Kinetics models of COD degradation,biomass growth of the anoxic-oxic ( A/O) system as well as NH3-N degradation in aerobic phase were presented according to the mass balance theory,reaction-diffusion theory and Fick law. Then these models were testified by comparson with experimental results. It is demonstrated that the variation trends of theoretical and experimental values for COD degradation and biomass growth are similar. The deviation rate between theoretical and experimental values is always under 20% even it increases along with the fluctuation of influent organic loading. In terms of NH3-N degradation,nitrification can also be well simulated by the model as the substrates of influent are sufficient. It indicates that the model can accurately reflect the reaction in hybrid A/O process. Models presented herein provide a theoretical basis for the design, operation and control of hybrid A/O process.展开更多
基金supported by the National Key Research and Development Program of China(2021YFB3501002)State Key Program of National Natural Science Foundation of China(5203405)+3 种基金National Natural Science Foundation of China(51974220,52104383)National Key Research and Development Program of China(2021YFB3700902)Key Research and Development Program of Shaanxi Province(2020ZDLGY13-06,2017ZDXM-GY-037)Shaanxi Province National Science Fund for Distinguished Young Scholars(2022JC-24)。
文摘A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate.
基金supported by the National Natural Science Foundation of China(22178190)。
文摘In response to the lack of reliable physical parameters in the process simulation of the butadiene extraction,a large amount of phase equilibrium data were collected in the context of the actual process of butadiene production by acetonitrile.The accuracy of five prediction methods,UNIFAC(UNIQUAC Functional-group Activity Coefficients),UNIFAC-LL,UNIFAC-LBY,UNIFAC-DMD and COSMO-RS,applied to the butadiene extraction process was verified using partial phase equilibrium data.The results showed that the UNIFAC-DMD method had the highest accuracy in predicting phase equilibrium data for the missing system.COSMO-RS-predicted multiple systems showed good accuracy,and a large number of missing phase equilibrium data were estimated using the UNIFAC-DMD method and COSMO-RS method.The predicted phase equilibrium data were checked for consistency.The NRTL-RK(non-Random Two Liquid-Redlich-Kwong Equation of State)and UNIQUAC thermodynamic models were used to correlate the phase equilibrium data.Industrial device simulations were used to verify the accuracy of the thermodynamic model applied to the butadiene extraction process.The simulation results showed that the average deviations of the simulated results using the correlated thermodynamic model from the actual values were less than 2%compared to that using the commercial simulation software,Aspen Plus and its database.The average deviation was much smaller than that of the simulations using the Aspen Plus database(>10%),indicating that the obtained phase equilibrium data are highly accurate and reliable.The best phase equilibrium data and thermodynamic model parameters for butadiene extraction are provided.This improves the accuracy and reliability of the design,optimization and control of the process,and provides a basis and guarantee for developing a more environmentally friendly and economical butadiene extraction process.
文摘Constrained Friction Processing(CFP)is a novel solid-state processing technique suitable for lightweight materials,such Mg-and Al-alloys.The technique enables grain size refinement to fine or even ultrafine scale.In this study,the effect of CFP on the microstructural refinement of AM50 rods is investigated in terms of particle size and morphology of the eutectic and secondary phases originally present in the base material,in particular the eutecticβ-Mg_(17)Al_(12)and Al-Mn phases.For that purpose,as-cast and solution heat-treated base material and processed samples were analyzed.The Al_(8)Mn_(5) intermetallic phase was identified as the main secondary phase present in all samples before and after the processing.A notorious refinement of these particles was observed,starting from particles with an average equivalent length of a few micrometers to around 560 nm after the processing.The refinement of the secondary phase refinement is attributed to a mechanism analogous to the attrition comminution,where the combination of temperature increase and shearing of the material enables the continuous breaking of the brittle intermetallic particles into smaller pieces.As for the eutectic phase,the results indicate the presence of the partially divorcedβ-Mg_(17)Al_(12)particles exclusively in the as-cast base material,indicating that no further phase transformations regarding the eutectic phase,such as dynamic precipitation,occurred after the CFP.In the case of the processed as-cast material analyzed after the CFP,the thermal energy generated during the processing led to temperature values above the solvus limit of the eutectic phase,which associated with the mechanical breakage of the particles,enabled the complete dissolution of this phase.Therefore,CFP was successfully demonstrated to promote an extensive microstructure refinement in multiple aspects,in terms of grain sizes of theα-Mg phase and presence and morphology of the Al-Mn and eutecticβ-Mg_(17)Al_(12).
基金supported as part of the Center for Hierarchical Waste Form Materials,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences under Award No.DE-SC0016574.
文摘Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.
文摘This study investigates full liquid phase sintering as a process of fabrication parts from WE43(Mg-4wt.%Y-3wt.%RE-0.7wt.%Zr)alloy using binder jetting additive manufacturing(BJAM).This fabrication process is being developed for use in producing structural or biomedical devices.Specifically,this study focused on achieving a near-dense microstructure with WE43 Mg alloy while substantially reducing the duration of sintering post-processing after BJAM part rendering.The optimal process resulted in microstructure with 2.5%porosity and significantly reduced sintering time.The improved sintering can be explained by the presence of Y_(2)O_(3)and Nd_(2)O_(3)oxide layers,which form spontaneously on the surface of WE43 powder used in BJAM.These layers appear to be crucial in preventing shape distortion of the resulting samples and in enabling the development of sintering necks,particularly under sintering conditions exceeding the liquidus temperature of WE43 alloy.Sintered WE43 specimens rendered by BJAM achieved significant improvement in both corrosion resistance and mechanical properties through reduced porosity levels related to the sintering time.
基金Projects (50831003, 50571037) supported by the National Natural Science Foundation of China
文摘The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index method (CTIM). It is found that during the relaxation process, the formation and evolution of bcc phase are closely dependent on the initial temperature and structure. During the simulation time scale, when the initial temperature is in the range of supercooled liquid region, the bcc phase can be formed and kept a long time; while it is in the range of glassy region, the bcc phase can be formed at first and then partially transformed into hcp phase; when it decreases to the lower one, the hcp and fcc phases can be directly transformed from the glassy structure without undergoing the metastable bcc phase. The Ostwald's "step rule" is impactful during the isothermal relaxation process of the supercooled and glassy Pb, and the metastable bcc phase plays an important role in the precursor of crystallization.
基金supported by the National Natural Science Foundation of China (No. 50274021)
文摘The optimum parameters were determined for synthesizing ZrN-Si3N4 composite powder from zircon by carbothermal reduction-nitridation (CTRN) process. The samples were prepared by mixing the carbon black of an average particle size less than 30 μm and the zircon of 40 μm with C/ZrSiO4 mass ratios of 0.2, 0.3, 0.4, and 0.5. The prepared samples were subjected to the CTRN process at temperatures of 1673, 1723, 1753, and 1773 K for 6, 9, and 12 h. The CTRN process was conducted in an atmosphere-controlled tubular furnace in a nitrogen gas flow of 1.0 L/rain. All the products were examined by X-ray powder diffraction to determine the transformation. The results showed that the proper transformation of ZrN-Si3N4 occurred at 1773 K for 12 h with a C/ZrSiO4 mass ratio of 0.4.
基金Item Sponsored by National Natural Science Foundation of China (50234040)
文摘M, a particular industrial waste, was selected to detoxify chromium slag at a high temperature. The carbon remaining in M reduced Cr ( Ⅳ ) of Na2 CrO4 borne in the chromium slag to Cr ( Ⅲ ) in the solid phase reaction, and its thermodynamics and kinetics were studied. The reduction process of Na2CrO4 by carbon produced CO, whiCh'was endothermic. Under the experimental condition, the apparent activation energy was 4. 41 kJ·mol^-1 , the'apparent order of reaction for Na2 CrO4 was equal to one, and the partial pressure of CO was only 0.22 Pa at 1 330℃.
基金supported by the National Natural Science Foundation of China(No.51072233)
文摘A novel method for the preparation of single-phase ammonium dimolybdate with industrial ammonium molybdate was studied. Various in- fluential factors were evaluated in the paper, including reaction temperature, reaction time, initial molybdenum concentration, initial NH_3 /Mo molar ratio, and stirring speed. Under the optimum experimental conditions, the crystallization rate of product is 85.23%. The X-ray diffraction (XRD) analysis and chemical analysis show that the product is single-phase ammonium dimolybdate, and no impurity phases exist. The scanning electronic microscope (SEM) image reveals uniform particle size, good particle dispersion, and no agglomeration between particles. Meanwhile, the final pH value of acidification was investigated. The total molybdenum recovery can reach up to 99.40%, and the main phases of acidification product are the same as those of raw material with the final pH value of 1.5. This determines that the acidification product can be used as a raw material to produce single-phase ammonium dimolybdate.
基金supported by the Natural Science Foundation of Henan Province(Grant No.152107000047)
文摘In this study, a two-step heating process is introduced for transient liquid phase ( TLP) diffusion bonding fo r sound joints with T91 heat resistant steels. At first, a short-time higher temperature heating step is addressed to melt the interlayer, followed by the second step to complete isothermal solidification at a low temperature. The most critical feature of our new method is producing a non-planar interface at the T9/ heat resistant steels joint. We propose a transitional liquid phase bonding of T91 heat resistant steels by this approach. Since joint microstructures have been studied, we tested the tensile strength to assess joint mechanical property. The result indicates that the solidified bond may contain a primary solid-solution, similar composition to the parent metal and free from precipitates. Joint tensile strength of the joint is not lower than parent materials. Joint bend's strengths are enhanced due to the higher metal-to-metal junction producing a non-planar bond lines. Nevertheless, the traditional transient liquid phase diffusion bonding produces planar ones. Bonding parameters of new process are 1 260 °C for 0. 5 min and 1 230 °C fo r 4 min.
文摘The phase-transformation in sol-gel preparation of barium hexaferrite and the formation of barium hexaferrite doped with La 3+ were studied by chemical p hase analysis, X-ray diffraction and infrared spectrometry analysis. The expe rimental results show that phase transformation reactions of FeCO 3, Fe 2O 3 and BaFe 2O 4, barium hexaferrite and γ-Fe 2O 3 take place in the heat tr eatment of gel. While the doping lanthanide ion replace barium ion, an equivalen t quantity of Fe 3+ are reduced to Fe 2+ to maintain the charge equili brium.
基金Supported by the National Defense Fundamental Research Fund (A1420080145)
文摘Iodine-sulfur (IS) thermochemical water-splitting cycle is the most promising massive hydrogen production process. To avoid the undesirable side reactions between hydriodic acid(HI) and sulfuric acid (H2SO4), it is necessary to purify the two phases formed by the Bunsen reaction. The purification process could be achieved by reverse reaction of the Bunsen reaction. In this study, the purification of the H2SO4 and HI Phases was studied. The purification proceeded in both batches and the continuous mode, the influences of operational parameters, including the reaction temperature, the flow rate of nitrogen gas, and the composition of the raw material solutions, on the purification effect, were investigated. Results showed that the purification of the H2SO4 phase was dominantly-affected by the reaction temperature, and iodine ion in the sulfuric acid phase could be removed completely when the temperature was above 130℃; although, the purification effect of the HI phase improved with increasing of both the flow rate of nitrogen gas and temperature.
文摘The microstructure and mechanical properties of extruded Mg-Zn alloy containing Y element were investigated in temperature range of 300-450°C and strain rate range of 0.001-1 s-1 through hot compression tests.Processing maps were used to indicate optimum conditions and instability zones for hot deformation of alloys.For Mg-Zn and Mg-Zn-Y alloys,peak stress,temperature and strain rate were related by hyperbolic sine function,and activation energies were obtained to be 177 and 236 kJ/mol,respectively.Flow curves showed that the addition of Y element led to increase in peak stress and decrease in peak strain,and indicated that DRX started at lower strains in Mg-Zn-Y alloy than in Mg-Zn alloy.The stability domains of Mg-Zn-Y alloy were indicated in two domains as 1)300°C,0.001 s-1;350°C,0.01-0.1 s-1 and 400°C,0.01 s-1 and 2)450°C,0.01-0.1 s-1.Microstructural observations showed that DRX was the main restoration mechanism for alloys,and fully dynamic recrystallization of Mg-Zn-Y alloy was observed at 450°C.The instability domain in Mg-Zn-Y alloy was located significantly at high strain rates.In addition,the instability zone width of Mg-Zn and Mg-Zn-Y alloys increased with increasing strain,and cracks,twins and severe deformation were considered in these regions.
基金supported by the National Natural Science Foundation of China(6100203161101187)
文摘In the distributed synthetic aperture radar (SAR), the alternating bistatic mode can perform phase reference without a synchronization link between two satellites compared with the pulsed alternate synchronization method. The key of the phase synchronization processing is to extract the oscillator phase differences from the bistatic echoes. A signal model of phase synchronization in the alternating bistatic mode is presented. The phase synchronization processing method is then studied. To reduce the phase errors introduced by SAR imaging, a sub-aperture processing method is proposed. To generalize the sub-aperture processing method, an echo-domain processing method using correlation of bistatic echoes is proposed. Finally, the residual phase errors of the both proposed processing methods are analyzed. Simulation experiments validate the proposed phase synchronization processing method and its phase error analysis results.
基金Project supported by the National Natural Foundation of China(Grant Nos.51590880,11564030,and 51571126)the National Key Research Program of China(Grant No.2016YFB0700903)+3 种基金Fujian Institute of Innovation,Chinese Academy of Sciences(Grant No.FJCXY18040302)the Key Program of the Chinese Academy of Sciences(Grant No.KJZD-EW-M05-1)the Inner Mongolia Science and Technology Major Project of 2016,Chinathe Natural Science Foundation of Inner Mongolia,China(Grant Nos.2018LH05006 and 2018LH05011)。
文摘Double main phase process is applied to fabricate [(Pr, Nd)1 – xMMx]13.8FebalM1.5B5.9 (x = 0.5 and 0.7;M = Cu, Al, Co, and Nb) sintered magnets with high misch metal (MM) content. In comparison to the magnets by single main phase process, the enhanced magnetic properties have been achieved. For magnets of x = 0.7, Hcj increases to 371.9 kA/m by 60.5%, and (BH)max is significantly enhanced to 253.3 kJ/m3 by 56.9%, compared with those of the single main phase magnets of the same nominal composition. In combination with minor loops and magnetic recoil curves, the property improvement of magnets with double main phase method is well explained. As a result, it is demonstrated that double main phase technology is an effective approach to improve the permanent magnetic properties of MM based sintered magnets.
基金supported by the National Basic Research Program (973 Program) of China under Grant No.2007CB310606National Key Technologies R&D Program under Grant No.2009ZX03004-001
文摘In this paper, the phase characteristic disturbance model for baseband direct sequence spread spectrum (DSSS) signal in additive white Gaussian noise (AWGN) environment is established, and the probability density function (PDF) of phase characteristic disturbance is obtained. Then a novel receiver model for baseband DSSS signal based on maximum likelihood (ML) criterion is proposed. The simulation results show that, comparing with correlation scheme, the performance of the proposed method for baseband DSSS signal is 1dB worse in AWGN environment. However, if there is narrow interference in the AWGN environment, the proposed method will show better performance up to 2.5dB, and it has good adaptive resistance to narrowband interference located in different frequency points. This method could be used as an alterative communication scheme for military circumstance when existing strong narrowband interference of various frequencies.
基金Project supported by the Postdoctoral Science Foundation of Central South University,ChinaProject(76112037)supported by theScience Foundation of Central South University,China
文摘The isothermal precipitating behavior of perovskite phase in oxidized titanium bearing slag was studied by quenching method.The kinetics of precipitating process and crystal growth of perovskite phase was analyzed.The results show that the precipitating and growth of perovskite are non-equilibrium process at the beginning of isothermal treatment.There are two factors influencing the growth rate of perovskite phase on non-equilibrium condition,one is the supersaturation concentration of perovskite and the other is the coarsening arising from the growth of larger perovskite at the expense of smaller ones.The precipitation kinetics of perovskite phase can be nearly described by the JMAK equation.
基金financially supported by the National Natural Science Foundation of China (Nos.U1360202,51472030,and 51502014)
文摘A C–Mn dual-phase steel was soaked at 800°C for 90 s and then either rapidly cooled to 450°C and held for 30 s(process A) or rapidly cooled to 350°C and then reheated to 450°C(process B) to simulate the hot-dip galvanizing process. The influence of the hot-dip galvanizing process on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel(DP600) was investigated using optical microscopy, scanning electron microscopy(SEM), transmission electron microscopy(TEM), and tensile tests. The results showed that, in the case of process A, the microstructure of DP600 was composed of ferrite, martensite, and a small amount of bainite. The granular bainite was formed in the hot-dip galvanizing stage, and martensite islands were formed in the final cooling stage after hot-dip galvanizing. By contrast, in the case of process B, the microstructure of the DP600 was composed of ferrite, martensite, bainite, and cementite. In addition, compared with the yield strength(YS) of the DP600 annealed by process A, that for the DP600 annealed by process B increased by approximately 50 MPa because of the tempering of the martensite formed during rapid cooling. The work-hardening coefficient(n value) of the DP600 steel annealed by process B clearly decreased because the increase of the YS affected the computation result for the n value. However, the ultimate tensile strength(UTS) and elongation(A80) of the DP600 annealed by process B exhibited less variation compared with those of the DP600 annealed by process A. Therefore, DP600 with excellent comprehensive mechanical properties(YS = 362 MPa, UTS = 638 MPa, A_(80) = 24.3%, n = 0.17) was obtained via process A.
基金Project supported by the National Natural Science Foundation of China(No. 50278036)the Natural Science Foundation of Guangdong Province (No. 04105951)
文摘A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and sulfide inhibition in reactors, were discussed for a JLAFB and a general anaerobic fiuidized bed (AFB) reactor used as sulfate-reducing phase and methane-producing phase, respectively, in two-phase anaerobic digestion process. The formation of granules in the two reactors was also examined. The results indicated that COD and sulfate removal had different demand of influent COD/SO4^2- ratios. When total COD removal was up to 85%, the ratio was only required up to 1.2, whereas, total sulfate removal up to 95% required it exceeding 3.0. The alkalinity in the two reactors increased linearly with the growth of influent alkalinity. Moreover, the change of influent alkalinity had no significant effect on pH and volatile fatty acids (VFA) in the two reactors. Influent alkalinity kept at 400-500 mg/L could meet the requirement of the treating process. The JLAFB reactor had great advantage in avoiding sulfide and free-H2S accumulation and toxicity inhibition on microorganisms. When sulfate loading rate was up to 8. 1 kg/(m^3.d), the sulfide and free-H2S concentrations in JLAFB reactor were 58.6 and 49.7 mg/L, respectively. Furthermore, the granules, with offwhite color, ellipse shape and diameters of 1.0-3.0 mm, could be developed in JLAFB reactor. In granules, different groups of bacteria were distributed in different layers, and some inorganic metal compounds such as Fe, Ca, Mg etc. were found.
基金Sponsored by the National Water Plan (2008ZX07207-005-03)
文摘Kinetics models of COD degradation,biomass growth of the anoxic-oxic ( A/O) system as well as NH3-N degradation in aerobic phase were presented according to the mass balance theory,reaction-diffusion theory and Fick law. Then these models were testified by comparson with experimental results. It is demonstrated that the variation trends of theoretical and experimental values for COD degradation and biomass growth are similar. The deviation rate between theoretical and experimental values is always under 20% even it increases along with the fluctuation of influent organic loading. In terms of NH3-N degradation,nitrification can also be well simulated by the model as the substrates of influent are sufficient. It indicates that the model can accurately reflect the reaction in hybrid A/O process. Models presented herein provide a theoretical basis for the design, operation and control of hybrid A/O process.