According to a mathematical model for dense two-phase flows presented in the previous pape[1],a dense two-phase flow in a vertical pipeline is analytically solved, and the analytic expressions of velocity of each cont...According to a mathematical model for dense two-phase flows presented in the previous pape[1],a dense two-phase flow in a vertical pipeline is analytically solved, and the analytic expressions of velocity of each continuous phase and dispersed phase are respectively derived. The results show that when the drag force between twophasesdepends linearly on their relative velocity, the relative velocity profile in the pipeline coincides with Darcy's law except for the thin layer region near the pipeline wall, and that the theoretical assumptions in the dense two-phase flow theory mentioned are reasonable.展开更多
A refined theoretical analysis for using the spiral airflow and axial airflow to purge residual water in an inclined pipe was presented. The computations reveal that, in most cases, the spiral flow can purge the resid...A refined theoretical analysis for using the spiral airflow and axial airflow to purge residual water in an inclined pipe was presented. The computations reveal that, in most cases, the spiral flow can purge the residual water in the inclined pipe indeed while the axial flow may induce back flow of the water, just as predicted in the experiments presented by Horii and Zhao et al. In addition, the effects of various initial conditions on water purging were studied in detail for both the spiral and axial flow cases.展开更多
Commercial code CFX was used to examine the performance of a two-fluid model to predict the details of upward isothermal bubbly flow of air and water in a vertical pipe. The model equations are volume-averaged Navier-...Commercial code CFX was used to examine the performance of a two-fluid model to predict the details of upward isothermal bubbly flow of air and water in a vertical pipe. The model equations are volume-averaged Navier-Stokes equations that require closure models for interfacial forces and bubble-induced turbulence effects. Two-equation SST and k-epsilon RANS turbulence models were also used. A parametric study of closure models included both standard options in CFX and previously published novel closure models that were implemented with user-defined functions. The CFD simulations were compared with two cases from the MTLoop experiments by Lucas<em> et al.</em> at the Helmholtz-Zentrum Dresden Rossendorf: one with wall-peak void fraction profile (MT039), and another with a core-peak void fraction profile (MT118). The effect of changing the drag force closures was not significant for the set examined. Poor predictions were found when the lift force and wall lubrication models were incompatible in magnitude. There was no significant effect of changing the liquid phase turbulence model. Changing the bubble-induced turbulence models, however, had a significant impact on the radial void fraction profile. The novel wall force from Lubchenko<em> et al.</em> at the Massachusetts Institute of Technology significantly improved the prediction of the near wall void fraction in the wall peak profile.展开更多
Multiple loop heat pipe is a high-functional thermal transport device. This work was conducted to confirm the working performance of Multiple loop heat pipe under thermal vacuum ambience with the working fluid ammonia...Multiple loop heat pipe is a high-functional thermal transport device. This work was conducted to confirm the working performance of Multiple loop heat pipe under thermal vacuum ambience with the working fluid ammonia. Asmall multiple loop heat pipe with two evaporators and two ra- diators was designed and fabricated. Then thermal vacuum test was conducted. The heaters were fasten on both evaporators, both radiators, both compensation chambers. In the case that both evaporators were heated, the multiple loop heat pipe can transport 120/120 W for 1.5 m, in the case that only one evaporator was heated, evaporator 1 can transport 80 W for 1.5 m, while eva- porator 2 can transport 120 W for 1.5 m. Two flow regulators were installed near the confluence of liquid line to prevent uncondensed vapor penetrating into returning liquid when the tempera- ture difference exists between two radiators. In the case that the heat load at both evaporators were 40/40 W and one radiator was heated, the flow regulator1 can tolerate the 160 W of heat load which was supplied to radiator1 while the flow regulator2 can tolerate the 100 W of heat load which was supplied to radiator2. To demonstrate the multiple loop heat pipe’s startup behavior at lowheat load, each of the compensation chamber was preheated to change the initial distribution of liquid and vapor in the evaporator and compensation chamber, in the result, each evaporator can start up at 5W through preheating.展开更多
A study on the character of pressure wave propagation was proposed for the gas liquid oxygen two-phase flow in the pipe between pumps.According to the practical working conditions,the homogenous model based on the com...A study on the character of pressure wave propagation was proposed for the gas liquid oxygen two-phase flow in the pipe between pumps.According to the practical working conditions,the homogenous model based on the compressibility theory regarding a single bubble in an infinite liquid,and Redlich-Kwong gas equation was derived a model for the low temperature and high pressure case,especially considering the change of the ratio of density of gas to one of liquid.The numerical tests were conducted.The results not only show the agreement between numerical simulation for this model and experiment at the normal temperature and pressure is good,but also show that the modifications of the model for the low temperature and high pressure condition are necessary.The study is of reference to further study of oscillation restrain and relative pipe tests.展开更多
文摘According to a mathematical model for dense two-phase flows presented in the previous pape[1],a dense two-phase flow in a vertical pipeline is analytically solved, and the analytic expressions of velocity of each continuous phase and dispersed phase are respectively derived. The results show that when the drag force between twophasesdepends linearly on their relative velocity, the relative velocity profile in the pipeline coincides with Darcy's law except for the thin layer region near the pipeline wall, and that the theoretical assumptions in the dense two-phase flow theory mentioned are reasonable.
文摘A refined theoretical analysis for using the spiral airflow and axial airflow to purge residual water in an inclined pipe was presented. The computations reveal that, in most cases, the spiral flow can purge the residual water in the inclined pipe indeed while the axial flow may induce back flow of the water, just as predicted in the experiments presented by Horii and Zhao et al. In addition, the effects of various initial conditions on water purging were studied in detail for both the spiral and axial flow cases.
文摘Commercial code CFX was used to examine the performance of a two-fluid model to predict the details of upward isothermal bubbly flow of air and water in a vertical pipe. The model equations are volume-averaged Navier-Stokes equations that require closure models for interfacial forces and bubble-induced turbulence effects. Two-equation SST and k-epsilon RANS turbulence models were also used. A parametric study of closure models included both standard options in CFX and previously published novel closure models that were implemented with user-defined functions. The CFD simulations were compared with two cases from the MTLoop experiments by Lucas<em> et al.</em> at the Helmholtz-Zentrum Dresden Rossendorf: one with wall-peak void fraction profile (MT039), and another with a core-peak void fraction profile (MT118). The effect of changing the drag force closures was not significant for the set examined. Poor predictions were found when the lift force and wall lubrication models were incompatible in magnitude. There was no significant effect of changing the liquid phase turbulence model. Changing the bubble-induced turbulence models, however, had a significant impact on the radial void fraction profile. The novel wall force from Lubchenko<em> et al.</em> at the Massachusetts Institute of Technology significantly improved the prediction of the near wall void fraction in the wall peak profile.
文摘Multiple loop heat pipe is a high-functional thermal transport device. This work was conducted to confirm the working performance of Multiple loop heat pipe under thermal vacuum ambience with the working fluid ammonia. Asmall multiple loop heat pipe with two evaporators and two ra- diators was designed and fabricated. Then thermal vacuum test was conducted. The heaters were fasten on both evaporators, both radiators, both compensation chambers. In the case that both evaporators were heated, the multiple loop heat pipe can transport 120/120 W for 1.5 m, in the case that only one evaporator was heated, evaporator 1 can transport 80 W for 1.5 m, while eva- porator 2 can transport 120 W for 1.5 m. Two flow regulators were installed near the confluence of liquid line to prevent uncondensed vapor penetrating into returning liquid when the tempera- ture difference exists between two radiators. In the case that the heat load at both evaporators were 40/40 W and one radiator was heated, the flow regulator1 can tolerate the 160 W of heat load which was supplied to radiator1 while the flow regulator2 can tolerate the 100 W of heat load which was supplied to radiator2. To demonstrate the multiple loop heat pipe’s startup behavior at lowheat load, each of the compensation chamber was preheated to change the initial distribution of liquid and vapor in the evaporator and compensation chamber, in the result, each evaporator can start up at 5W through preheating.
文摘A study on the character of pressure wave propagation was proposed for the gas liquid oxygen two-phase flow in the pipe between pumps.According to the practical working conditions,the homogenous model based on the compressibility theory regarding a single bubble in an infinite liquid,and Redlich-Kwong gas equation was derived a model for the low temperature and high pressure case,especially considering the change of the ratio of density of gas to one of liquid.The numerical tests were conducted.The results not only show the agreement between numerical simulation for this model and experiment at the normal temperature and pressure is good,but also show that the modifications of the model for the low temperature and high pressure condition are necessary.The study is of reference to further study of oscillation restrain and relative pipe tests.