The alternating method based on the fundamental solutions of the infinite domain containing a crack,namely Muskhelishvili’s solutions,divides the complex structure with a crack into a simple model without crack which...The alternating method based on the fundamental solutions of the infinite domain containing a crack,namely Muskhelishvili’s solutions,divides the complex structure with a crack into a simple model without crack which can be solved by traditional numerical methods and an infinite domain with a crack which can be solved by Muskhelishvili’s solutions.However,this alternating method cannot be directly applied to the edge crack problems since partial crack surface of Muskhelishvili’s solutions is located outside the computational domain.In this paper,an improved alternating method,the spline fictitious boundary element alternating method(SFBEAM),based on infinite domain with the combination of spline fictitious boundary element method(SFBEM)and Muskhelishvili’s solutions is proposed to solve the edge crack problems.Since the SFBEM and Muskhelishvili’s solutions are obtained in the framework of infinite domain,no special treatment is needed for solving the problem of edge cracks.Different mixed boundary conditions edge crack problems with varies of computational parameters are given to certify the high precision,efficiency and applicability of the proposed method compared with other alternating methods and extend finite element method.展开更多
In this paper, we extend the reliable modification of the Adomian Decom-position Method coupled to the Lesnic’s approach to solve boundary value problems and initial boundary value problems with mixed boundary condit...In this paper, we extend the reliable modification of the Adomian Decom-position Method coupled to the Lesnic’s approach to solve boundary value problems and initial boundary value problems with mixed boundary conditions for linear and nonlinear partial differential equations. The method is applied to different forms of heat and wave equations as illustrative examples to exhibit the effectiveness of the method. The method provides the solution in a rapidly convergent series with components that can be computed iteratively. The numerical results for the illustrative examples obtained show remarkable agreement with the exact solutions. We also provide some graphical representations for clear-cut comparisons between the solutions using Maple software.展开更多
In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condi...In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condition. The uniform convergence on small parameter ε of order one for an IVin type difference scheme constructed is proved. At the end of the paper, a numerical example is given. The computing results coincide with the theoretical analysis.展开更多
By using cone theory and the MSnch fixed theorem combined with a monotone iterative technique, we investigate the existence of positive solutions for systems of second- order nonlinear singular differential equations ...By using cone theory and the MSnch fixed theorem combined with a monotone iterative technique, we investigate the existence of positive solutions for systems of second- order nonlinear singular differential equations with integral boundary conditions on infinite interval and establish the existence theorem of positive solutions and iterative sequence for approximating the positive solutions. The results in this paper improve some known results.展开更多
By fixed point theorem of a mixed monotone operators, we study Lidstone boundary value problems to nonlinear singular 2mth-order differential and difference equations, and provide sufficient conditions for the existen...By fixed point theorem of a mixed monotone operators, we study Lidstone boundary value problems to nonlinear singular 2mth-order differential and difference equations, and provide sufficient conditions for the existence and uniqueness of positive solution to Lidstone boundary value problem for 2mth-order ordinary differential equations and 2mth-order difference equations. The nonlinear term in the differential and difference equation may be singular.展开更多
In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution...In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution by applying some well-known fixed point theorems. An example is given to illustrate the effectiveness of our result.展开更多
This paper is devoted to study of an iterative procedure for domain decomposition method of second order elliptic problem with mixed boundary conditions (i.e., Dirichlet condition on a part of boundary and Neumann con...This paper is devoted to study of an iterative procedure for domain decomposition method of second order elliptic problem with mixed boundary conditions (i.e., Dirichlet condition on a part of boundary and Neumann condition on the another part of boundary). For the pure Dirichlet problem, Marini and Quarteroni [3], [4] considered a similar approach, which is extended to more complex problem in this paper.展开更多
Small-time asymptotics of the trace of the heat semigroup θ(t)=Σ<sub>v=1</sub><sup>x</sup> exp(-tμ<sub>v</sub>). where {μ<sub>v</sub>} are the eigenvalues of the...Small-time asymptotics of the trace of the heat semigroup θ(t)=Σ<sub>v=1</sub><sup>x</sup> exp(-tμ<sub>v</sub>). where {μ<sub>v</sub>} are the eigenvalues of the uegative Laplacian -Δ= -Σ<sub>β=1</sub><sup>2</sup>(/x<sup>β</sup>)<sup>2</sup> in the (x<sup>1</sup>, x<sup>2</sup>)-plane. is studied for a general bounded domain Ω with a smooth boundary Ω. where a finite number of Dirichlet. Neumann and Robin boundary conditions, on the piecewise smooth parts Γ<sub>i</sub>(i=1, ..., n) of )Ω such that)Ω=∪<sub>i=1</sub><sup>n</sup>Γ<sub> </sub>are considered. Some geometrical properties associated with Ω are determined展开更多
This paper is concerned with a novel deep learning method for variational problems with essential boundary conditions.To this end,wefirst reformulate the original problem into a minimax problem corresponding to a feas...This paper is concerned with a novel deep learning method for variational problems with essential boundary conditions.To this end,wefirst reformulate the original problem into a minimax problem corresponding to a feasible augmented La-grangian,which can be solved by the augmented Lagrangian method in an infinite dimensional setting.Based on this,by expressing the primal and dual variables with two individual deep neural network functions,we present an augmented Lagrangian deep learning method for which the parameters are trained by the stochastic optimiza-tion method together with a projection technique.Compared to the traditional penalty method,the new method admits two main advantages:i)the choice of the penalty parameter isflexible and robust,and ii)the numerical solution is more accurate in the same magnitude of computational cost.As typical applications,we apply the new ap-proach to solve elliptic problems and(nonlinear)eigenvalue problems with essential boundary conditions,and numerical experiments are presented to show the effective-ness of the new method.展开更多
This paper deals with a four-point boundary value problem [φ(u')]' = f(t, u, u'),a < t < b with u(a) - u(ao) = A, u(b) - u(bo) = B, where a < a0 <b0 < b.
The nonlocal theory which confiders interatomic long-range interaction in materials is one of the generalized continuum theories which involve the microstructure characteristic of material media. The basic equations o...The nonlocal theory which confiders interatomic long-range interaction in materials is one of the generalized continuum theories which involve the microstructure characteristic of material media. The basic equations of linear, homogeneous, isotropic, nonlocal elastic solids展开更多
In this paper we discuss the existence of at least three solutions for a class of gradient mixed boundary value systems. The approach is fully based on a recent three critical points theorem of B. Ricceri [A three cri...In this paper we discuss the existence of at least three solutions for a class of gradient mixed boundary value systems. The approach is fully based on a recent three critical points theorem of B. Ricceri [A three critical points theorem revisited, Nonlinear Anal., 70:9(2009),3084-3089].展开更多
For plate bending and stretching problems in piezoelectric materials,the reciprocal theorem and the general solution of piezoelasticity are applied in a novel way to obtain the appropriate mixed boundary conditions ac...For plate bending and stretching problems in piezoelectric materials,the reciprocal theorem and the general solution of piezoelasticity are applied in a novel way to obtain the appropriate mixed boundary conditions accurate to all order.A decay analysis technique is used to establish necessary conditions that the prescribed data on the edge of the plate must satisfy in order that it should generate a decaying state within the plate.For the case of axisymmetric bending and stretching of a circular plate,these decaying state conditions are obtained explicitly for the first time when the mixed conditions are imposed on the plate edge.They are then used for the correct formulation of boundary conditions for the interior solution.展开更多
基金supported by the National Natural Science Foundation of China(51078150)the National Natural Science Foundation of China(11602087)+1 种基金the State Key Laboratory of Subtropical Building Science,South China University of Technology(2017ZB32)National Undergraduate Innovative and Entrepreneurial Training Program(201810561180).
文摘The alternating method based on the fundamental solutions of the infinite domain containing a crack,namely Muskhelishvili’s solutions,divides the complex structure with a crack into a simple model without crack which can be solved by traditional numerical methods and an infinite domain with a crack which can be solved by Muskhelishvili’s solutions.However,this alternating method cannot be directly applied to the edge crack problems since partial crack surface of Muskhelishvili’s solutions is located outside the computational domain.In this paper,an improved alternating method,the spline fictitious boundary element alternating method(SFBEAM),based on infinite domain with the combination of spline fictitious boundary element method(SFBEM)and Muskhelishvili’s solutions is proposed to solve the edge crack problems.Since the SFBEM and Muskhelishvili’s solutions are obtained in the framework of infinite domain,no special treatment is needed for solving the problem of edge cracks.Different mixed boundary conditions edge crack problems with varies of computational parameters are given to certify the high precision,efficiency and applicability of the proposed method compared with other alternating methods and extend finite element method.
文摘In this paper, we extend the reliable modification of the Adomian Decom-position Method coupled to the Lesnic’s approach to solve boundary value problems and initial boundary value problems with mixed boundary conditions for linear and nonlinear partial differential equations. The method is applied to different forms of heat and wave equations as illustrative examples to exhibit the effectiveness of the method. The method provides the solution in a rapidly convergent series with components that can be computed iteratively. The numerical results for the illustrative examples obtained show remarkable agreement with the exact solutions. We also provide some graphical representations for clear-cut comparisons between the solutions using Maple software.
文摘In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condition. The uniform convergence on small parameter ε of order one for an IVin type difference scheme constructed is proved. At the end of the paper, a numerical example is given. The computing results coincide with the theoretical analysis.
基金SuppoSed by the NSF of Anhui Provincial Education Depaxtment(KJ2012A265,KJ2012B187)
文摘By using cone theory and the MSnch fixed theorem combined with a monotone iterative technique, we investigate the existence of positive solutions for systems of second- order nonlinear singular differential equations with integral boundary conditions on infinite interval and establish the existence theorem of positive solutions and iterative sequence for approximating the positive solutions. The results in this paper improve some known results.
基金supported by Scientific Research Fund of Heilongjiang Provincial Education Department (11544032)the National Natural Science Foundation of China (10571021, 10701020)
文摘By fixed point theorem of a mixed monotone operators, we study Lidstone boundary value problems to nonlinear singular 2mth-order differential and difference equations, and provide sufficient conditions for the existence and uniqueness of positive solution to Lidstone boundary value problem for 2mth-order ordinary differential equations and 2mth-order difference equations. The nonlinear term in the differential and difference equation may be singular.
基金Supported by the NNSF of China(ll071001) Supported by the NSF" of the Anhui Higher Education Institutions of China(KJ2013B276) Supporied by the Key Program of the Natural Science Foundation for the Excellent Youth Scholars of Anhui Higher Education Institutions of China (2013SQRL142ZD)
文摘In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution by applying some well-known fixed point theorems. An example is given to illustrate the effectiveness of our result.
文摘This paper is devoted to study of an iterative procedure for domain decomposition method of second order elliptic problem with mixed boundary conditions (i.e., Dirichlet condition on a part of boundary and Neumann condition on the another part of boundary). For the pure Dirichlet problem, Marini and Quarteroni [3], [4] considered a similar approach, which is extended to more complex problem in this paper.
文摘Small-time asymptotics of the trace of the heat semigroup θ(t)=Σ<sub>v=1</sub><sup>x</sup> exp(-tμ<sub>v</sub>). where {μ<sub>v</sub>} are the eigenvalues of the uegative Laplacian -Δ= -Σ<sub>β=1</sub><sup>2</sup>(/x<sup>β</sup>)<sup>2</sup> in the (x<sup>1</sup>, x<sup>2</sup>)-plane. is studied for a general bounded domain Ω with a smooth boundary Ω. where a finite number of Dirichlet. Neumann and Robin boundary conditions, on the piecewise smooth parts Γ<sub>i</sub>(i=1, ..., n) of )Ω such that)Ω=∪<sub>i=1</sub><sup>n</sup>Γ<sub> </sub>are considered. Some geometrical properties associated with Ω are determined
基金supported by the National Key Research and Development Project(Grant No.2020YFA0709800)NSFC(Grant No.12071289)+4 种基金Shanghai Municipal Science and Technology Major Project(2021SHZDZX0102)supported by the National Key R&D Program of China(2020YFA0712000)NSFC(under grant numbers 11822111,11688101)the science challenge project(No.TZ2018001)youth innovation promotion association(CAS).
文摘This paper is concerned with a novel deep learning method for variational problems with essential boundary conditions.To this end,wefirst reformulate the original problem into a minimax problem corresponding to a feasible augmented La-grangian,which can be solved by the augmented Lagrangian method in an infinite dimensional setting.Based on this,by expressing the primal and dual variables with two individual deep neural network functions,we present an augmented Lagrangian deep learning method for which the parameters are trained by the stochastic optimiza-tion method together with a projection technique.Compared to the traditional penalty method,the new method admits two main advantages:i)the choice of the penalty parameter isflexible and robust,and ii)the numerical solution is more accurate in the same magnitude of computational cost.As typical applications,we apply the new ap-proach to solve elliptic problems and(nonlinear)eigenvalue problems with essential boundary conditions,and numerical experiments are presented to show the effective-ness of the new method.
文摘This paper deals with a four-point boundary value problem [φ(u')]' = f(t, u, u'),a < t < b with u(a) - u(ao) = A, u(b) - u(bo) = B, where a < a0 <b0 < b.
基金Project supported by the National Natural Science Foundation of China
文摘The nonlocal theory which confiders interatomic long-range interaction in materials is one of the generalized continuum theories which involve the microstructure characteristic of material media. The basic equations of linear, homogeneous, isotropic, nonlocal elastic solids
文摘In this paper we discuss the existence of at least three solutions for a class of gradient mixed boundary value systems. The approach is fully based on a recent three critical points theorem of B. Ricceri [A three critical points theorem revisited, Nonlinear Anal., 70:9(2009),3084-3089].
基金Supported by the National Natural Science Foundation of China(Grant Nos.10702077and 10602001)the Beijing Natural Science Foundation(Grant No.1083012)the Alexander von Humboldt Foundation in Germany
文摘For plate bending and stretching problems in piezoelectric materials,the reciprocal theorem and the general solution of piezoelasticity are applied in a novel way to obtain the appropriate mixed boundary conditions accurate to all order.A decay analysis technique is used to establish necessary conditions that the prescribed data on the edge of the plate must satisfy in order that it should generate a decaying state within the plate.For the case of axisymmetric bending and stretching of a circular plate,these decaying state conditions are obtained explicitly for the first time when the mixed conditions are imposed on the plate edge.They are then used for the correct formulation of boundary conditions for the interior solution.