Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based ...Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based on engineering properties to simulate the gradual collapse of the roof during longwall top coal caving(LTCC).A numerical model is established using the material point method(MPM)and the strain-softening damage constitutive model according to the structure of the physical model.Numerical simulations are conducted to analyze the LTCC process under different hard roofs for ground hydraulic fracturing.The results show that ground hydraulic fracturing releases the energy and stress of the target stratum,resulting in a substantial lag in the fracturing of the overburden before collapse occurs in the hydraulic fracturing stratum.Ground hydraulic fracturing of a low hard roof reduces the lag effect of hydraulic fractures,dissipates the energy consumed by the fracture of the hard roof,and reduces the abutment stress.Therefore,it is advisable to prioritize the selection of the lower hard roof as the target stratum.展开更多
In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infin...In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.展开更多
The scale-invariant feature transform(SIFT)ability to automatic control points(CPs)extraction is very well known on remote sensing images,however,its result inaccurate and sometimes has incorrect matching from generat...The scale-invariant feature transform(SIFT)ability to automatic control points(CPs)extraction is very well known on remote sensing images,however,its result inaccurate and sometimes has incorrect matching from generating a small number of false CPs pairs,their matching has high false alarm.This paper presents a method containing a modification to improve the performance of the SIFT CPs matching by applying sum of absolute difference(SAD)in different manner for the new optical satellite generation called near-equatorial orbit satellite(NEqO)and multi-sensor images.The proposed method leads to improving CPs matching with a significantly higher rate of correct matches.The data in this study were obtained from the RazakSAT satellite covering the Kuala Lumpur-Pekan area.The proposed method consists of three parts:(1)applying the SIFT to extract CPs automatically,(2)refining CPs matching by SAD algorithm with empirical threshold,and(3)evaluating the refined CPs scenario by comparing the result of the original SIFT with that of the proposed method.The result indicates an accurate and precise performance of the model,which showed the effectiveness and robustness of the proposed approach.展开更多
Grounding Points (GPs) are installed in electrical power system to drive protective devices and accomplish the person nel safety. The general grounding problem is to find the optimal locations of these points so that ...Grounding Points (GPs) are installed in electrical power system to drive protective devices and accomplish the person nel safety. The general grounding problem is to find the optimal locations of these points so that the security and reli ability of power system can be improved. This paper presents a practical approach to find the optimal location of GPs based on the ratios of zero sequence reactance with positive sequence reactance (X0/X1), zero sequence resistance with positive sequence reactance (R0/X1) and Ground Fault Factor (GFF). The optimal values of these indicators were deter-mined by considering several scenarios of fault disturbances such as single line to ground on a selected area of the Iraqi National Grid (132 KV) taking into account the statue of GPs for transformers in the other substations. From the presented results in this paper, it is noted that GFF calculated for some substations could be used to measure the effectiveness of GPs. However, the operated time of relay can be taken as a criterion of this measurement for selecting the best location of GPs.展开更多
To analyze the pipeline response under permanent ground deformation,the evolution of resistance acting on the pipe during the vertical downward offset is an essential ingredient.However,the efficient simulation of pip...To analyze the pipeline response under permanent ground deformation,the evolution of resistance acting on the pipe during the vertical downward offset is an essential ingredient.However,the efficient simulation of pipe penetration into soil is challenging for the conventional finite element(FE)method due to the large deformation of the surrounding soils.In this study,the B-spline material point method(MPM)is employed to investigate the pipe-soil interaction during the downward movement of rigid pipes buried in medium and dense sand.To describe the density-and stress-dependent behaviors of sand,the J2-deformation type model with state-dependent dilatancy is adopted.The effectiveness of the model is demonstrated by element tests and biaxial compression tests.Afterwards,the pipe penetration process is simulated,and the numerical outcomes are compared with the physical model tests.The effects of pipe size and burial depth are investigated with an emphasis on the mobilization of the soil resistance and the failure mechanisms.The simulation results indicate that the bearing capacity formulas given in the guidelines can provide essentially reasonable estimates for the ultimate force acting on buried pipes,and the recommended value of yield displacement may be underestimated to a certain extent.展开更多
In neutral point indirectly grounded systems, phase-to-ground fault is putting new demands on fault diagnosis technology. Information fusion is applied to detect the phase-to-ground fault, which integrates several sou...In neutral point indirectly grounded systems, phase-to-ground fault is putting new demands on fault diagnosis technology. Information fusion is applied to detect the phase-to-ground fault, which integrates several sources of information, including line current, line voltage, zero sequence current and voltage, and quintic harmonic wave component. This method is testified through the simulation of Matlab. Simulation results show that the precision and reliability of the detection has been greatly increased.展开更多
We study the Choquard equation-Δu+V(x)u-b(x)∫R3|u(y)|2/|x-y|dyu,x∈R3,where V(x)=V1(x),b(x)=b1(x)for x1>0 and V(x)=V2(x),b(x)=b2(x)for x1<0,and V1,V2,b1and b2are periodic in each coordinate direction.Under som...We study the Choquard equation-Δu+V(x)u-b(x)∫R3|u(y)|2/|x-y|dyu,x∈R3,where V(x)=V1(x),b(x)=b1(x)for x1>0 and V(x)=V2(x),b(x)=b2(x)for x1<0,and V1,V2,b1and b2are periodic in each coordinate direction.Under some suitable assumptions,we prove the existence of a ground state solution of the equation.Additionally,we find some sufficient conditions to guarantee the existence and nonexistence of a ground state solution of the equation.展开更多
井下斜坡道的定位与建图是实现井下斜坡道无人驾驶的关键技术之一,矿山井下斜坡道区域为典型非结构化环境特征,且道路具有一定倾斜角度,采用传统SLAM算法无法获得精确里程计信息,导致定位与建图精度难以满足无人矿卡行驶需求。针对上述...井下斜坡道的定位与建图是实现井下斜坡道无人驾驶的关键技术之一,矿山井下斜坡道区域为典型非结构化环境特征,且道路具有一定倾斜角度,采用传统SLAM算法无法获得精确里程计信息,导致定位与建图精度难以满足无人矿卡行驶需求。针对上述问题,通过研究激光SLAM(Simultaneous Localization And Mapping)算法LeGO-LOAM,笔者提出一种适用于矿山井下斜坡道环境的定位与建图方法。首先,针对井下斜坡道口两侧均为光滑水泥墙壁,特征点稀少问题,设计了基于人工路标的辅助增强定位方法,有效增加点云特征数量,从而优化位姿估计结果,避免建图漂移现象;然后在特征预处理阶段,提出了一种基于激光点云高度差与坡度信息融合的提取地面点高效算法,通过改善地面地点的选取策略,针对倾斜坑洼路面仍能有效识别地面点,解决了井下斜坡道定位与建图倾斜角度大、误差大等问题;其次,基于CVC(Curved-Voxel Clustering)聚类算法设计了一种斜坡道点云曲率体素聚类算法,采用曲率体素和基于哈希的数据结构对点云进行分割,大幅提高在井下稀疏、噪声环境下点云聚类的鲁棒性;最后,运用Scan-To-Map进行点云匹配,同时兼顾点云配准的性能与速度。在中钢集团山东某井下斜坡道的现场实验证明:与原算法相比精度提升13.15%,Z轴误差降低22.3%,地图质量明显提升,能有效解决井下无人驾驶建图及定位的难题。展开更多
基于激光雷达(Light Detection And Ranging,LiDAR)数据重建树体三维模型并精准获取林木空间枝干结构参数对林木性状评价、森林动态经营管理与可视化研究具有重要意义。为此提出一种基于骨架细化提取的树木模型重建方法。首先,采用Focus...基于激光雷达(Light Detection And Ranging,LiDAR)数据重建树体三维模型并精准获取林木空间枝干结构参数对林木性状评价、森林动态经营管理与可视化研究具有重要意义。为此提出一种基于骨架细化提取的树木模型重建方法。首先,采用FocusS350/350 PLUS三维激光扫描仪获取3块不同树龄橡胶树的样地数据。然后,作为细化建模的重点,将枝干点云从原始树点中分离出来,再将其过度分割为若干点云簇,通过相邻点云簇判断是否有分枝以及动态确定骨架点间距,并将其运用在空间殖民算法以此来生成树的三维骨架点和骨架点连通性链表,根据连通链表结构自动识别树木中的主枝干和各个一级分枝,再通过广义圆柱体生成树干完成树木三维重建。最后,利用数字孪生技术对这3块不同树龄样地树木进行三维实景建模,使其穿越时空在同一空间中重现,以便更为直观地观察树木在生长过程中的形态变化。该算法得到的橡胶树胸径与实测值比对为,决定系数(R^(2))>0.91,均方根误差(root mean square Error,RMSE)<1.00 cm;主枝干与一级枝干的分枝角为,R^(2)>0.91,RMSE<2.93;一级枝干直径为,R^(2)>0.90,RMSE<1.41 cm;将3个树龄放在一起计算其生长参数,并与实测值进行对比,发现该算法同样适用于异龄林样地的各个生长参数计算。同时发现橡胶树的一级枝条的直径越大,其相对应的叶团簇体积就越大。运用人工智能的理论模型来处理林木的激光点云数据,旨在为森林的可视化以及树木骨架结构的智能化分析与处理等研究领域提供有价值的参考。展开更多
基金the National Natural Science Foundation of China(No.51974042)National Key Research and Development Program of China(No.2023YFC3009005).
文摘Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based on engineering properties to simulate the gradual collapse of the roof during longwall top coal caving(LTCC).A numerical model is established using the material point method(MPM)and the strain-softening damage constitutive model according to the structure of the physical model.Numerical simulations are conducted to analyze the LTCC process under different hard roofs for ground hydraulic fracturing.The results show that ground hydraulic fracturing releases the energy and stress of the target stratum,resulting in a substantial lag in the fracturing of the overburden before collapse occurs in the hydraulic fracturing stratum.Ground hydraulic fracturing of a low hard roof reduces the lag effect of hydraulic fractures,dissipates the energy consumed by the fracture of the hard roof,and reduces the abutment stress.Therefore,it is advisable to prioritize the selection of the lower hard roof as the target stratum.
文摘In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.
文摘The scale-invariant feature transform(SIFT)ability to automatic control points(CPs)extraction is very well known on remote sensing images,however,its result inaccurate and sometimes has incorrect matching from generating a small number of false CPs pairs,their matching has high false alarm.This paper presents a method containing a modification to improve the performance of the SIFT CPs matching by applying sum of absolute difference(SAD)in different manner for the new optical satellite generation called near-equatorial orbit satellite(NEqO)and multi-sensor images.The proposed method leads to improving CPs matching with a significantly higher rate of correct matches.The data in this study were obtained from the RazakSAT satellite covering the Kuala Lumpur-Pekan area.The proposed method consists of three parts:(1)applying the SIFT to extract CPs automatically,(2)refining CPs matching by SAD algorithm with empirical threshold,and(3)evaluating the refined CPs scenario by comparing the result of the original SIFT with that of the proposed method.The result indicates an accurate and precise performance of the model,which showed the effectiveness and robustness of the proposed approach.
文摘Grounding Points (GPs) are installed in electrical power system to drive protective devices and accomplish the person nel safety. The general grounding problem is to find the optimal locations of these points so that the security and reli ability of power system can be improved. This paper presents a practical approach to find the optimal location of GPs based on the ratios of zero sequence reactance with positive sequence reactance (X0/X1), zero sequence resistance with positive sequence reactance (R0/X1) and Ground Fault Factor (GFF). The optimal values of these indicators were deter-mined by considering several scenarios of fault disturbances such as single line to ground on a selected area of the Iraqi National Grid (132 KV) taking into account the statue of GPs for transformers in the other substations. From the presented results in this paper, it is noted that GFF calculated for some substations could be used to measure the effectiveness of GPs. However, the operated time of relay can be taken as a criterion of this measurement for selecting the best location of GPs.
基金supported by the National Natural Science Foundation of China(Grant Nos.42225702,42077235 and 41722209).
文摘To analyze the pipeline response under permanent ground deformation,the evolution of resistance acting on the pipe during the vertical downward offset is an essential ingredient.However,the efficient simulation of pipe penetration into soil is challenging for the conventional finite element(FE)method due to the large deformation of the surrounding soils.In this study,the B-spline material point method(MPM)is employed to investigate the pipe-soil interaction during the downward movement of rigid pipes buried in medium and dense sand.To describe the density-and stress-dependent behaviors of sand,the J2-deformation type model with state-dependent dilatancy is adopted.The effectiveness of the model is demonstrated by element tests and biaxial compression tests.Afterwards,the pipe penetration process is simulated,and the numerical outcomes are compared with the physical model tests.The effects of pipe size and burial depth are investigated with an emphasis on the mobilization of the soil resistance and the failure mechanisms.The simulation results indicate that the bearing capacity formulas given in the guidelines can provide essentially reasonable estimates for the ultimate force acting on buried pipes,and the recommended value of yield displacement may be underestimated to a certain extent.
文摘In neutral point indirectly grounded systems, phase-to-ground fault is putting new demands on fault diagnosis technology. Information fusion is applied to detect the phase-to-ground fault, which integrates several sources of information, including line current, line voltage, zero sequence current and voltage, and quintic harmonic wave component. This method is testified through the simulation of Matlab. Simulation results show that the precision and reliability of the detection has been greatly increased.
基金supported by National Natural Science Foundation of China(11971202)Outstanding Young foundation of Jiangsu Province(BK20200042)。
文摘We study the Choquard equation-Δu+V(x)u-b(x)∫R3|u(y)|2/|x-y|dyu,x∈R3,where V(x)=V1(x),b(x)=b1(x)for x1>0 and V(x)=V2(x),b(x)=b2(x)for x1<0,and V1,V2,b1and b2are periodic in each coordinate direction.Under some suitable assumptions,we prove the existence of a ground state solution of the equation.Additionally,we find some sufficient conditions to guarantee the existence and nonexistence of a ground state solution of the equation.
文摘井下斜坡道的定位与建图是实现井下斜坡道无人驾驶的关键技术之一,矿山井下斜坡道区域为典型非结构化环境特征,且道路具有一定倾斜角度,采用传统SLAM算法无法获得精确里程计信息,导致定位与建图精度难以满足无人矿卡行驶需求。针对上述问题,通过研究激光SLAM(Simultaneous Localization And Mapping)算法LeGO-LOAM,笔者提出一种适用于矿山井下斜坡道环境的定位与建图方法。首先,针对井下斜坡道口两侧均为光滑水泥墙壁,特征点稀少问题,设计了基于人工路标的辅助增强定位方法,有效增加点云特征数量,从而优化位姿估计结果,避免建图漂移现象;然后在特征预处理阶段,提出了一种基于激光点云高度差与坡度信息融合的提取地面点高效算法,通过改善地面地点的选取策略,针对倾斜坑洼路面仍能有效识别地面点,解决了井下斜坡道定位与建图倾斜角度大、误差大等问题;其次,基于CVC(Curved-Voxel Clustering)聚类算法设计了一种斜坡道点云曲率体素聚类算法,采用曲率体素和基于哈希的数据结构对点云进行分割,大幅提高在井下稀疏、噪声环境下点云聚类的鲁棒性;最后,运用Scan-To-Map进行点云匹配,同时兼顾点云配准的性能与速度。在中钢集团山东某井下斜坡道的现场实验证明:与原算法相比精度提升13.15%,Z轴误差降低22.3%,地图质量明显提升,能有效解决井下无人驾驶建图及定位的难题。
文摘基于激光雷达(Light Detection And Ranging,LiDAR)数据重建树体三维模型并精准获取林木空间枝干结构参数对林木性状评价、森林动态经营管理与可视化研究具有重要意义。为此提出一种基于骨架细化提取的树木模型重建方法。首先,采用FocusS350/350 PLUS三维激光扫描仪获取3块不同树龄橡胶树的样地数据。然后,作为细化建模的重点,将枝干点云从原始树点中分离出来,再将其过度分割为若干点云簇,通过相邻点云簇判断是否有分枝以及动态确定骨架点间距,并将其运用在空间殖民算法以此来生成树的三维骨架点和骨架点连通性链表,根据连通链表结构自动识别树木中的主枝干和各个一级分枝,再通过广义圆柱体生成树干完成树木三维重建。最后,利用数字孪生技术对这3块不同树龄样地树木进行三维实景建模,使其穿越时空在同一空间中重现,以便更为直观地观察树木在生长过程中的形态变化。该算法得到的橡胶树胸径与实测值比对为,决定系数(R^(2))>0.91,均方根误差(root mean square Error,RMSE)<1.00 cm;主枝干与一级枝干的分枝角为,R^(2)>0.91,RMSE<2.93;一级枝干直径为,R^(2)>0.90,RMSE<1.41 cm;将3个树龄放在一起计算其生长参数,并与实测值进行对比,发现该算法同样适用于异龄林样地的各个生长参数计算。同时发现橡胶树的一级枝条的直径越大,其相对应的叶团簇体积就越大。运用人工智能的理论模型来处理林木的激光点云数据,旨在为森林的可视化以及树木骨架结构的智能化分析与处理等研究领域提供有价值的参考。