Focusing on the vibration of the roadbed and ground induced by high-speed train load, a three dimensional finite element model which includes the roadbed and horizontal layered site is established to study how the sit...Focusing on the vibration of the roadbed and ground induced by high-speed train load, a three dimensional finite element model which includes the roadbed and horizontal layered site is established to study how the site conditions, the load moving speed and the depth of the soil element influence the soil element stress response. Based on a track-subsoil analytical model in which the rail is simulated as an Euler-Bernoulli beam resting on Winkler foundation in the vertical plane, the reaction force between the sleeper and roadbed excited by a single axle is presented, and then that is exerted on relevant elements to simulate the moving load. The dynamic response in the roadbed and subsoil excited by a single axle moving load is computed based on the parallel computing platform of the ABAQUS finite element software, and the stress time-history, stress path and curves of the principal stress axes rotation of the soil element under the track are presented. The results show that: the soil element stress path is an apple-shaped curve in the horizontal shear stress τd versus the stress difference (σsh - σch )/2 coordinate system; the principal stress axes rotate 180° for the soil element under the load moving line during the load running, and the stress state changes from the pure shear to triaxial shear and then back to the pure shear again. The element dynamic stress increases as the moving load speed increases, which increases sharply when the load speed approaches the Rayleigh wave velocity of soil layer; the site conditions and the soil element depth affect the soil element stress path significantly.展开更多
This paper focuses on the type synthesis of two degree-of-freedom(2-DoF) rotational parallel mechanisms(RPMs) that would be applied as mechanisms actuating the inter-satellite link antenna. Based upon Lie group theory...This paper focuses on the type synthesis of two degree-of-freedom(2-DoF) rotational parallel mechanisms(RPMs) that would be applied as mechanisms actuating the inter-satellite link antenna. Based upon Lie group theory, two steps are necessary to synthesize 2-DoF RPMs except describing the continuous desired motions of the moving platform. They are respectively generation of required open-loop limbs between the fixed base and the moving platform and definition of assembly principles for these limbs. Firstly, all available displacement subgroups or submanifolds are obtained readily according to that the continuous motion of the moving platform is the intersection of those of all open-loop limbs. These subgroups or submanifolds are used to generate all the topology structures of limbs. By describing the characteristics of the displacement subgroups and submanifolds intuitively through employing simple geometrical symbols, their intersection and union operations can be carried out easily. Based on this, the assembly principles of two types are defined to synthesize all 2-DoF RPMs using obtained limbs. Finally, two novel categories of 2-DoF RPMs are provided by introducing a circular track and an articulated rotating platform,respectively. This work can lay the foundations for analysis and optimal design of 2-DoF RPMs that actuate the inter-satellite link antenna.展开更多
文摘Focusing on the vibration of the roadbed and ground induced by high-speed train load, a three dimensional finite element model which includes the roadbed and horizontal layered site is established to study how the site conditions, the load moving speed and the depth of the soil element influence the soil element stress response. Based on a track-subsoil analytical model in which the rail is simulated as an Euler-Bernoulli beam resting on Winkler foundation in the vertical plane, the reaction force between the sleeper and roadbed excited by a single axle is presented, and then that is exerted on relevant elements to simulate the moving load. The dynamic response in the roadbed and subsoil excited by a single axle moving load is computed based on the parallel computing platform of the ABAQUS finite element software, and the stress time-history, stress path and curves of the principal stress axes rotation of the soil element under the track are presented. The results show that: the soil element stress path is an apple-shaped curve in the horizontal shear stress τd versus the stress difference (σsh - σch )/2 coordinate system; the principal stress axes rotate 180° for the soil element under the load moving line during the load running, and the stress state changes from the pure shear to triaxial shear and then back to the pure shear again. The element dynamic stress increases as the moving load speed increases, which increases sharply when the load speed approaches the Rayleigh wave velocity of soil layer; the site conditions and the soil element depth affect the soil element stress path significantly.
基金supported by the National Natural Science Foundation of China (No. 51475321)Tianjin Research Program of Application Foundation and Advanced Technology (No. 15JCZDJC38900 and No. 16JCYBJC19300)
文摘This paper focuses on the type synthesis of two degree-of-freedom(2-DoF) rotational parallel mechanisms(RPMs) that would be applied as mechanisms actuating the inter-satellite link antenna. Based upon Lie group theory, two steps are necessary to synthesize 2-DoF RPMs except describing the continuous desired motions of the moving platform. They are respectively generation of required open-loop limbs between the fixed base and the moving platform and definition of assembly principles for these limbs. Firstly, all available displacement subgroups or submanifolds are obtained readily according to that the continuous motion of the moving platform is the intersection of those of all open-loop limbs. These subgroups or submanifolds are used to generate all the topology structures of limbs. By describing the characteristics of the displacement subgroups and submanifolds intuitively through employing simple geometrical symbols, their intersection and union operations can be carried out easily. Based on this, the assembly principles of two types are defined to synthesize all 2-DoF RPMs using obtained limbs. Finally, two novel categories of 2-DoF RPMs are provided by introducing a circular track and an articulated rotating platform,respectively. This work can lay the foundations for analysis and optimal design of 2-DoF RPMs that actuate the inter-satellite link antenna.